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Abstract

The main theme of this thesis is the theory of Euler and Kolyvagin systems. Such

systems are norm compatible classes in the Galois cohomology of p-adic represen-

tations. We focus on two aspects of this theory: how to prove these norm compati-

bilities in the case of the Asai representation attached to a quadratic Hilbert modular

form on one hand and how to use norm compatible classes to bound Selmer groups

in the case of elliptic curves with a rational p-isogeny on the other.

More precisely, in the first part of this thesis we study certain classes in motivic

cohomology of Hilbert modular surfaces, first constructed by Lei–Loeffler–Zerbes.

We prove norm relations for the Euler system built from these classes for the Asai

representation attached to a Hilbert modular form over a quadratic real field F . Un-

der a strong condition on the underlying real quadratic field, we give a proof of

the norm relations for primes that split in F, using the technique introduced by the

authors. We then redefine the classes in the language used by Loeffler–Skinner–

Zerbes in the GSp(4) case and prove norm relations using local representation the-

ory. With this technique we are able to remove the above mentioned assumption

and prove tame norm relations for all inert and split primes.

In the second part, we present part of a joint work with F. Castella, J. Lee

and C. Skinner in which we use the Heegner point Kolyvagin system to prove a

bound on the Selmer group attached to a rational elliptic curve with a rational p-

isogeny, extending a result by Howard. This result is crucial in the proof of the

anticyclotomic Iwasawa main conjecture, which is used in the above mentioned

work to prove new cases of the p-part of the Birch and Swinnerton-Dyer conjecture.
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Chapter 1

Introduction

One of the most challenging open problems in Number Theory is the conjecture

of Birch and Swinnerton-Dyer for elliptic curves and its generalisation to motives,

as given by Bloch and Kato [BK90] and later refined by Fontaine and Perrin-Riou

[FPR94]. Roughly speaking, in order to study a motive M (for example the one

attached to an elliptic curve E over Q), one can look at two objects of very dif-

ferent nature: an L-function, which is an analytic object “collecting local data at

all primes”, and an algebraic object encoding “global aspects” of the motive, for

example the set of all rational points of E or, more generally, a Selmer group. The

Birch and Swinnerton-Dyer and the Bloch-Kato conjectures predict that there is a

surprisingly strict relation between these apparently different sides. The simplest

form of the conjecture can be stated as follows: the L-function L(M,s) attached to

the motive M is a priori defined on some half plane, but it is expected to have an-

alytic continuation for all s ∈ C. Denote by X(M) the algebraic object attached to

M; under some assumptions, these conjectures relate X(M) and the value at some

integer s0 of the L-function L(M,s). In particular they predict

L(M,s0) 6= 0⇒ X(M) is finite, (rank 0)

ords=s0 L(M,s)≥ 1⇒ X(M) is infinite. (rank ≥ 1)

The theory of Euler and Kolyvagin systems is a powerful tool that can be used

to attack these conjectures. In this thesis we present some results in two different
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settings: in Chapter 3 and 4 the motive1 considered is attached to a quadratic Hilbert

modular form, in Chapter 5 it is the one given by elliptic curves over Q. The results

we present are motivated by their application in proving the statement (rank 0) in

the former case and a refinement of (rank ≥ 1) in rank one in the latter case.

1.1 What is an Euler system?
The notion of Euler system has been developed in the last 30 years, starting with

the work of Thaine [Tha88], where he introduced a remarkable new method for

studying ideal class groups of real abelian number fields using cyclotomic units, the

simplest example of an Euler system. Thaine used such units to construct explic-

itly a large collection of principal ideals of real abelian number fields to bound the

exponent of the different Galois eigencomponents of the ideal class group of the

field. Soon after this work, Kolyvagin independently discovered a similar method

[Kol88, Kol90], using Heegner points on (modular) rational elliptic curves to bound

their Selmer group. Another important construction has been made by Kato in

[Kat04] using Siegel units to prove bounds on Selmer groups of cuspidal eigen-

forms. What these works have in common is the idea of producing a large collec-

tion of classes in the Galois cohomology of certain p-adic Galois representations.

If these classes are compatible in some sense, then they can be used to bound some

Selmer groups.

A formalisation of this theory appeared in [Rub00] and [MR04] and we refer

the reader to such books for further details. We recall here the definition in the

simplest setting. Let GQ = Gal(Q̄/Q) be the absolute Galois group of Q and p be

a prime and E a finite extension of Qp. We consider the case of representations of

GQ on E-vector spaces V of finite dimension d, where we assume that

ρ : GQ→ Aut(V )∼= GLd(E)

is continuous with respect to the profinite topology of GQ and the p-adic topology

on GLd(E). We also assume that such representation is unramified outside a finite

1Here by motive we simply mean a compatible system of Galois representations.
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set Σ of places including p and the archimedean places, i.e. for all ` 6∈ Σ, we have

ρ (I`) = {1}, where I` is the inertia group at `.

The first example is the representation Zp(1). Let µpn =
{

x ∈ Q̄× : xpn
= 1
}
.

Then µpn is finite cyclic of order pn and GQ acts on it. The p-power map sends

µpn+1 → µpn and we define

Zp(1) := lim←−
n

µpn, Qp(1) := Zp(1)⊗Qp.

This is a 1-dimensional continuous Qp-representation, unramified outside {p}.

Moreover GQ acts by the cyclotomic character χcyc : GQ → Z×p . For any given

representation V as above, we denote by V (n) the representation

V (n) :=V ⊗Qp(1)⊗n.

Finally, letQ(µm) be the cyclotomic extension ofQ, obtained by adding toQ the m-

th roots of unity µm =
{

x ∈ Q̄× : xm = 1
}

and denote by V ∗ the dual representation

of V .

We are finally ready to give the definition of an Euler system for a represen-

tation V as above. Recall that the inclusion GQ(µm) ⊃ GQ(µn) for m | n induces a

corestriction map in Galois cohomology

coresQ(µn)
Q(µm)

: H1(Q(µn),V )→ H1(Q(µm),V ).

An Euler system for V is a collection of Galois cohomology-classes (zm)m≥1 with

zm ∈ H1(Q(µm),V ∗(1)) satisfying the following norm relations:

coresQ(µm`)
Q(µm)

zm` =

zm ` | m or ` ∈ Σ

P̀ (Frob−1
` )zm otherwise,

(NR)

where Frob−1
` is the geometric Frobenius and P̀ (x) = det(1− Frob−1

` x|V ) is the

characteristic polynomial2.
2Note that in [Rub00], an Euler system is defined by bounded classes, i.e. classes taking values
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Remark 1.1.1. We make a few comments about the more general case, where Q is

replaced by a number field K.

1. Following [Rub00, II.1], the definition of Euler system can be adapted to p-

adic Galois representations of the absolute Galois group of a number field K

by requiring that we have Galois cohomology classes “in every ray class field

extension of K” and modifying the norm relations accordingly. Notice that

the ray class field extensions of Q are precisely the cyclotomic fields.

2. The above-mentioned definition does not cover the case of Kolyvagin’s Heeg-

ner points. The classes obtained using those special points will not be defined

over abelian extensions of Q, but rather over abelian extensions of an imag-

inary quadratic field K which are not abelian over Q. On the other hand, if

one tries to make the definition work for K, the problem is that the classes are

defined only over abelian extension of K which are anticyclotomic over Q.

However, the process of “taking the Kolyvagin derivatives” of these classes

works also in that setting and the Kolyvagin system can be used to prove the

desired bound of the Selmer group of elliptic curves over K.

1.2 Selmer group bounds
Selmer groups are the algebraic objects attached to a p-adic Galois representation

V that are conjecturally linked to the analytic L-functions attached to V . If V is an

E-vector space and O denotes the ring of integers of E, we fix a GQ-stable lattice

T ⊂ V . The idea is that the Galois cohomology group H1(Q,T ) carries a lot of

information about the representation, but it is too big, often of infinite rank. Hence

instead of considering H1(Q,T ), one defines a Selmer group by taking a subspace

cut out by imposing local conditions. For every place v of Q we have the natural

restriction map

locv : H1(Q,T )→ H1(Qv,T )

in the cohomology of a fixed lattice T ⊂V independent of m. Even though that is the right setting for
applications, we decided to define the classes with values in V , since this is the setting of Chapters 3
and 4. However, one can show that the classes there defined can be suitably modified to be integral.
See for example Remark 4.8.14.
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given by the inclusion GQv ⊂ GQ. There are different Selmer structures one can

consider, one example is the following (which is usually referred to as strict Selmer

group):

Sel(Q,T ) =

c ∈ H1(Q,T ) :
loc`(c) ∈ ker

(
H1 (Q`,T )→ H1 (I`,T )

)
if ` - p∞

locp(c) = loc∞(c) = 0.


Selmer structures are always defined by imposing the unramified condition outside

a finite set of places and one can show (see for example [MR04, Proposition 2.1.5])

that this implies that the corresponding Selmer group has finite rank over O .

Now assume that we have an integral Euler system for V , i.e. classes zm ∈

H1(Q(µm),T ∗(1)) satisfying (NR). Under some technical assumptions on T , we

have the following result.

Theorem 1.2.1 (Cfr. II.2.2 [Rub00]). If the bottom class z1 of the Euler system is

not zero, then the Selmer group Sel(Q,T ) is finite.

Actually, this statement can be made more precise and one has a bound on the

size of the Selmer group in terms of the index of the class z1, see op. cit. for more

details. We also remark that, even if the statement only involves the bottom class,

one really needs the full Euler system to produce such bound.

It may look surprising that classes in Galois cohomology over cyclotomic ex-

tensions are able to give information about Galois cohomology over Q, but this is

precisely where the Kolyvagin derivative process comes into play. Let ` be an odd

prime and Γ` be the Galois group of Q(µ`)/Q, which is cyclic of order `− 1 and

generated by an element σ`. For ` 6= p, one considers the derivative operator

D` :=
`−2

∑
i=0

iσ i
` ∈ Z[Γ`]. (Kolyvagin derivative)

An easy computation verifies the following equality

(σ`−1)D` = (`−1)−NmQ(µ`)/Q . (1.2.1)
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One considers similarly, for any square-free integer m coprime to p and letting again

Γm be the Galois group of Q(µm)/Q, the operator

Dm := ∏
`|m

D` ∈ Z[Γm].

Let ϖ be a uniformiser of O . The idea is to consider the classes zm seen as ele-

ments in H1(Q(µm),T ∗(1)/ϖM) for some integer M and an infinite set of integers

m chosen to satisfy certain congruence conditions with respect to ϖM (for example

one requires that all the primes dividing m are congruent to 1 modulo ϖM). Using

(1.2.1) and the norm relations (NR) one shows that

Dm · zm ∈ H1(Q(µm),T ∗(1)/ϖ
M)Γm .

The next step is to prove that we can find a well-defined preimage, de-

noted by κM,m, of Dm · zm under the restriction map H1(Q,T ∗(1)/ϖM) →

H1(Q(µm),T ∗(1)/ϖM)Γm . The localisation of these classes will satisfy certain

conditions, for example (NR) is used to relate loc`(κM,`m) and loc`(κM,m) for ` - m.

Classes satisfying such relations are the so-called Kolyvagin systems and they are

used to prove Theorem 1.2.1.

More details about how one can obtain such results are presented in Chapter

5, where the classes obtained by Heegner points, which indeed form a Kolyvagin

system, are used to bound a Selmer group over a quadratic imaginary field attached

to a rational elliptic curve.

Remark 1.2.2. In this type of argument, one does not need an Euler/Kolyvagin

system for all integers m. It suffices to have classes for a “large enough” infinite set

of integers. More precisely, the argument of [Rub00, Chapter V] applies Čebotarev

density theorem to find primes whose Frobenius is in the same conjugacy class of a

certain fixed element in the absolute Galois group of Q. For example, in the proof

of [LLZ18, Theorem 9.5.3], the authors verify that this condition forces such primes

to be inert in the real quadratic field.
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Finally, we briefly mention that the strategy one would like to apply to use

Theorem 1.2.1 for proving results like (rank 0) is to relate the bottom class z1 of

the Euler system to the L-function L(V ∗(1),s). Proving for example that the critical

value L(V ∗(1),s0) vanishes if and only if z1 = 0, combined with Theorem 1.2.1,

would give one implication of (rank 0).

1.3 A method for constructing Euler systems

Even though Euler systems are expected to exist for “representations coming from

geometry” (see [PR95, PR98]), it is very difficult to construct them. Until recently

the only known non-trivial constructions were cyclotomic units, elliptic units (see

for example [Rub91]) and Kato classes ([Kat04]). In the last few years some new

Euler systems have been constructed, e.g. an Euler system for the p-adic represen-

tation attached to the Rankin-Selberg convolution of two modular forms [LLZ14],

for the Asai representation of a quadratic Hilbert modular form [LLZ18] and for the

spin representation of a genus 2 Siegel modular form [LSZ20a]. Some progress

on the construction of an Euler system for a genus 3 Siegel modular form has

been made in [CRJ18]. The common input of these works, following the ideas

of [Kat04], are Siegel units, which are invertible elements in O(YGL2), where YGL2

denotes the modular curve. More generally one considers Eisenstein classes, which

are elements in the first motivic cohomology group of YGL2 with coefficients in some

specific motivic sheaves.

The idea of the aforementioned papers is then to consider embeddings GL2 ↪→

G (or GL2×GL1 GL2 ↪→ G in [LSZ20a] and GL2×GL1 GL2×GL1 GL2 ↪→ G in

[CRJ18]), where G is a suitable algebraic group. These embeddings are chosen to be

such that they induce a closed embedding of Shimura varieties. Pushing forward the

Siegel units via such embedding, one gets classes in a motivic cohomology group

of the Shimura variety YG. Such embeddings are then suitably “perturbed” in order

to define classes in the motivic cohomology of the base change over cyclotomic

extensions YG× µm. Via the étale regulator one obtains classes in the continuous

étale cohomology of YG×µm. The group G is chosen using some numerology (see
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[LZ18, 2.4]), so that, after applying the Hochschild-Serre spectral sequence, one

obtains classes in the middle degree étale cohomology of YG. More precisely, in the

simplest case, one finds classes

zm ∈ H1(Q(µm),H
dimYG
ét (YG,Q̄,Qp)).

The middle degree étale cohomology of Shimura varieties is the natural place where

Galois representations VΠ attached to automorphic representations Π of the corre-

sponding group G appear. Hence projecting to the Π-isotypic component of the

middle degree étale cohomology, one finds classes in H1(Q(µm),VΠ) giving rise to

an Euler system. For a more detailed overview of the circle of ideas of these works

see the lecture notes [LZ18].

1.4 Norm relations and Asai–Flach classes
The main difficulty in proving that the classes constructed as above form an Eu-

ler system is the proof of the tame Euler system norm relations, i.e. comparing

classes zm` and zm when ` -m. In the Rankin–Selberg [LLZ14] and in the Asai case

[LLZ18], these relations are proved via some explicit computations in the Hecke al-

gebra. This approach would have been much more difficult (or even impossible) for

the Euler system attached to a genus 2 Siegel modular form, as the structure of the

group GSp4 is too complicated. In [LSZ20a], indeed, the technique used was dif-

ferent: the norm relations were obtained using results from smooth representation

theory.

The classes appearing in Chapters 3 and 4 are the Asai-Flach classes, originally

constructed in [LLZ18]. Let us give more details about this case. Let F/Q be a real

quadratic field and let {σ1,σ2} be the set of embeddings of F into R. We let G be

the Q-algebraic group obtained as the Weil restriction of GL2 from F to Q. The

reflex field of the Hilbert modular surface YG is Q.

Let p be a prime and let f be a Hilbert cuspidal eigenform over F of level

coprime to p. One has a 2 dimensional p-adic Galois representation of Gal(Q̄/F)

associated to f . From that one can obtain, via tensor induction, a 4 dimensional
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p-adic Galois representation of GQ; it is called Asai representation attached to f

and we denote it by V As
f . This representation appears in the middle degree étale

cohomology of the Hilbert modular surface YG.

In [LLZ18], the authors constructed the Asai–Flach classes in the cohomology

of the Hilbert modular surface and were able to build Galois cohomology classes

satisfying (NR) assuming that F has trivial narrow class group. More precisely, they

prove (NR) in the case where ` is inert and sketch the proof of the case where ` splits

and the primes above ` are trivial in the narrow class group. In Chapter 3 we give the

details of the latter for classes in motivic cohomology with trivial coefficients. The

technique used involves some explicit computations in the Hecke algebra, which,

combined with the properties of Siegel units, allow to prove the desired relations.

In Chapter 4, we redefine such classes and prove norm relations with the

smooth representation theory technique introduced in [LSZ20a], which allows to

remove the above assumptions and to prove (NR) for every unramified prime. We

therefore obtain the following result, with no need of assuming the triviality of the

narrow class group of F .

Theorem 1.4.1 ([LLZ18, Gro20]). Suppose f has level N 6= 1 and is of weights (k+

2,k′+2), for k,k′ ≥ 0 and N sufficiently large3 coprime to 6p and the discriminant

of F. Let j be an integer such that 0≤ j≤min(k,k′). Assume f is not a base change

lift of a modular form of GL2 /Q. Then there exists an Euler system (zm
[ f , j])m≥1 for

V As
f (1+ j), satisfying (NR).

In order to (re)define the Euler system constructed in [LLZ18], we construct

a special map A F k,k’,j
mot for k,k′, j as above with values in degree 3 motivic coho-

mology groups of some motivic sheaf D(2) over YG. Such map will be of “global

nature”, more precisely it is a map

A F k,k’,j
mot : S (A2

f ,Q)⊗H (G(A f ),Q)−→ H3
mot(YG,D(2))

satisfying some conditions of H(A f )×G(A f )-equivariance. Here we let H = GL2,

3in the sense of Remark 2.2.7.
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A f is the group of finite adèles of Q, H (G(A f ),Q) is the Hecke algebra over

G(A f ) and S (A2
f ,Q) denotes the space of Schwartz functions on A2

f , which

parametrises Eisenstein classes. The Asai–Flach classes are defined as images of

explicit elements under A F k,k’,j
mot . Proving norm relations (in motivic cohomology)

turns out to be equivalent to proving relations locally at a certain prime `. In or-

der to do this, after recalling some standard tools of local representation theory, we

study local zeta integrals attached to principal series representations, using them to

characterise the local Euler factor appearing in (NR). The key result we need to use

such zeta integrals to prove tame norm relations is then a multiplicity one result

(see Theorem 4.5.1). It will follow from [Pra90, Theorem 1.1] in some cases and

we prove it in the remaining needed cases, using tools of Mackey theory following

the strategy used by Prasad in op. cit. and a result of [KMS03] in some degenerate

cases.

1.4.1 Future work and applications to Bloch–Kato conjecture

A priori, the construction above could give a system of trivial classes, namely we

do not know whether zm
[ f , j] = 0 for every m and every f . However, applying the

complex regulator to the bottom class in motivic cohomology and computing the

pairing with some differential form associated to a Hilbert modular form f , the au-

thors of [LLZ18] can prove (see [LLZ18, Corollary 5.4.9, Proposition 5.1.3]) that if

|k−k′| ≥ 3 then the motivic class in non-zero. Assuming the conjectured injectivity

of the étale regulator, one has that the classes obtained in the étale cohomology of

the Hilbert modular surface are non-zero. A second piece of evidence of the non-

triviality of this construction is provided in [LSZ20b], where the authors express

the localisations at p of the étale classes in terms of overconvergent p-adic modular

forms.

Therefore, one can aim to find a sufficient condition for the class z1
[ f , j] to

be different from zero and hence, applying Theorem 1.2.1, for the strict Selmer

group of T As
f (1+ j) to be finite. In particular if s0 is the central critical point for
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L((V As
f )∗(− j),s), proving the implication

L((V As
f )∗(− j),s0) 6= 0⇒ z1

[ f , j] 6= 0 (?)

could give new cases of the conjecture (rank 0). Usually, these types of results are

proved relating the bottom class of the Euler system to values of a suitable p-adic L-

functions. In the case of the Asai representation attached to Hilbert modular forms,

there is no known construction of a p-adic L-function interpolating the values of the

complex Asai L-function.

In current work in progress, we first plan to construct such an L-function, us-

ing methods recently developed in [LPSZ19], where the authors construct a p-adic

L-function for the spin representation of genus 2 Siegel modular forms, relying cru-

cially on Pilloni’s recent work on higher Hida theory [Pil20]. The idea of their

construction is as follows: in [Har04] Harris shows that critical values of the spin

L-function can be expressed as cup products of classes in coherent cohomology, and

Pilloni’s results can be used to show that these coherent cohomology classes vary

in p-adic families and hence give rise to a p-adic L-function. We plan to adapt this

strategy to quadratic Hilbert modular forms.

Hida’s theory of ordinary p-adic families of modular forms has been

used to construct p-adic Rankin–Selberg L-functions for GL2×GL2 (by Hida

[Hid85] and Panchishkin [Pan83]), and triple product L-functions for the group

GL2×GL2×GL2 (by Harris–Tilouine [HT01]). Classical Hida theory is sufficient

for those cases since one works with products of the modular curve and it suffices

to vary p-adically the degree zero cohomology group. In the case of the Siegel

threefold or of the Hilbert modular surfaces, the classes one needs to vary are in the

degree one cohomology group and that is why higher Hida theory comes into play.

We are currently developing in [Gro] higher Hida theory for Hilbert modular

varieties (in the case where the prime p is totally split). We plan to use it to construct

a p-adic Asai L-function and then, in the quadratic case, aim to relate it to the Asai–

Flach Euler system via the so-called “explicit reciprocity laws”. They should relate

the image of the bottom Euler system class under the syntomic regulator to a (non-
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critical) value of the p-adic L-function. This is the key result needed for a proof of

(?).

1.5 Heegner points and Selmer groups of elliptic

curves

As already mentioned, the classes constructed from Heegner points do not fit in the

definition given above. However, with the Kolyvagin classes obtained from them

one still obtains interesting Selmer group bounds. Consider E an elliptic curve over

Q and L a number field. Fix p a rational prime; we write Selp∞(E/L),Sp(E/L) for

the usual p-Selmer groups sitting into the following exact sequences

0→ E(L)⊗Qp/Zp→ Selp∞(E/L)→W[p∞]→ 0 (1.5.1)

0→ E(L)⊗Zp→ Sp(E/L)→ lim←−
n

W[pn]→ 0,

where W is the Tate-Shafarevic group of E/L. We have Selp∞(E/L) ⊂

H1(L,E[p∞]),Sp(E/L) ⊂ H1(L,Tp(E)), where E[p∞] is the p∞-torsion of E and

Tp(E) denotes the p-adic Tate module of E.

Consider a quadratic imaginary field K satisfying the Heegner hypothesis, i.e.

such that all primes dividing the conductor of E split in K. Furthermore, we also

assume that the prime p splits in K. The theory of complex multiplication gives

a family of points on the modular curve of level equal to the conductor which are

rational over abelian extensions of K. More precisely, for every squarefree product

n of rational primes inert in K, one constructs a point defined over K[n], the ring

class field of K of conductor n. Fixing a modular parametrisation of E yields a fam-

ily of points P[n] ∈ E(K[n]) which satisfy Euler system-like norm relations. After

applying the Kummer map and the Kolyvagin derivative operator to the points P[n],

one finds classes

κn ∈ SelF (n) (K,Tp(E)/InTp(E))⊂ H1 (K,Tp(E)/InTp(E))
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for some ideals In ⊂ Zp, with I1 = {0}. The classes κn lie in Selmer groups

defined using some transverse condition at primes dividing n and so that

SelF (1) (K,Tp(E)) = Sp(E/K). Such classes form a Kolyvagin system and can

be used to prove interesting Selmer group bounds.

In Chapter 5, we prove the following theorem, generalising a result by Howard

[How04] in the case where the GK-representation on E[p] is irreducible.

Theorem 1.5.1. Assume that p is a prime of good reduction for E and that

E[p](K) = 0. If κ1 6= 0 then Sp(E/K) is a free Zp-module of rank one and there is

a finite Zp-module M such that Selp∞(E/K)∼= (Qp/Zp)⊕M⊕M and

lengthZp
(M)≤ lengthZp

(Sp(E/K)/κ1 ·Zp)+ t,

where t is a non-negative integer depending only on Im(GK → GL(Tp(E)) '

GL2(Zp)).

Remark 1.5.2. One can characterise the error term t and, in particular, we prove

that t = 0 if E[p] is irreducible, recovering Howard’s result. In [CGLS20], we prove

the result by similar methods for the twist of the representation Tp(E) by certain

anticyclotomic characters. This allows us to prove the Heegner point Iwasawa main

conjecture, originally formulated by Perrin-Riou in [PR87] and proved in the irre-

ducible case by Howard [How04].

1.5.1 Applications to the Birch and Swinnerton-Dyer conjecture

This type of result has interesting applications in terms of the conjecture (rank≥ 1).

More preciely, consider E/Q an elliptic curve. The L-function L(E,s) attached to

it is known to have analytic continuation to the whole complex plane thanks to the

work of Wiles, Taylor–Wiles and Breuil–Conrad–Diamond–Taylor [Wil95, TW95,

BCDT01]. Its central critical value is at s = 1. Moreover the Mordell–Weil theorem

asserts that the group of rational points of E is isomorphic to Zr⊕T , where T is

a finite abelian group and r ≥ 0 is an integer, called the algebraic rank of E. The

Birch–Swinnerton-Dyer conjecture predicts that the Tate–Shafarevich group of E is
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finite and

ords=1 L(E,s) = r.

Notice that, assuming that the p-part of the Tate–Shafarevich group of E is finite, r

is also equal to the corank of the p∞-Selmer group Selp∞(E/Q) using (1.5.1).

The celebrated work of Gross–Zagier [GZ86] gives the following characteri-

sation of the class κ1:

d
ds

L(E/K,s)|s=1 6= 0⇔ κ1 6= 0. (1.5.2)

The combination of this result and the mentioned work of Kolyvagin, yields the

following remarkable case of the conjecture.

Theorem 1.5.3 (Gross–Zagier, Kolyvagin). Let E be an elliptic curve over Q, then

(rank ≥ 1) holds true in the rank one case. More precisely

ords=1 L(E,s) = 1⇒ rankZE(Q) = 1 and #W(E/Q)< ∞.

In [CGLS20] we consider E/Q an elliptic curve and p an odd prime of good

ordinary reduction. Assume that E admits a p-isogeny over Q. Recall that by the

work of Mazur [Maz78] this implies p ≤ 37; however, by the same work, we also

have that for p≤ 13 we have infinitely many isomorphism classes of elliptic curves

with a rational p-isogeny. Under some assumptions, we prove the anticyclotomic

Iwasawa main conjecture for E/K using the generalisation of Theorem 1.5.1 men-

tioned in Remark 1.5.2. Choosing the field K carefully and following a strategy first

introduced by Skinner in [Ski20] in the irreducible case, we are then able to prove

the p-converse to Theorem 1.5.3.

Theorem 1.5.4 ([CGLS20]). Let E/Q be an elliptic curve and p an odd prime of

good ordinary reduction. Assume that E has a rational p-isogeny with the charac-

ter giving the action on its kernel being different from the trivial character or the

cyclotomic character when restricted to the decomposition group at p. We have that

“the p-part of the converse implication of (rank ≥ 1) in the rank one case” holds
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true. More precisely

rankZE(Q) = 1 and #W(E/Q)[p∞]< ∞⇒ ords=1 L(E,s) = 1.

Finally, we briefly mention that, as explained for example in [Wil06], the

Birch–Swinnerton-Dyer conjecture also predicts an exact formula for the leading

term of the Taylor expansion of L(E,s) at s = 1. The p-part of the formula for ellip-

tic curves of rank one has been established in some cases ([JSW17, Cas18]), always

using the irreducibility of the representation E[p] as an important assumption. In

the work [CGLS20], as another application of the anticyclotomic Iwasawa main

conjecture, we also deduce the p-part of the formula for elliptic curves of rank one

with a rational p-isogeny such that the character giving the action on its kernel is

either ramified at p and odd or unramified at p and even. In a future project, we also

plan to work on proving the p-part of the formula in the complementary case, i.e.

when the character is either unramified at p and odd or ramified at p and even. A

key input in the strategy will be again the anticyclotomic Iwasawa main conjecture

for E/K.



Chapter 2

Preliminaries

In this chapter we recall some background material, that will be useful in Chapter 3

and 4. In particular, we give the definition of modular curves, Siegel units, which are

invertible functions on some modular curves, and Hilbert modular surfaces. We then

talk about motivic cohomology and define some motivic sheaves. Siegel units (and

their generalisations) can be seen as elements in the motivic cohomology of modular

curves; they will be used to define Asai–Flach classes, which are elements in the

motivic cohomology of Hilbert modular surfaces. Finally, we recall the definition

of Hilbert modular forms and of certain Galois representations attached to them.

2.1 Modular curves and Siegel units

2.1.1 Modular curves

We start by recalling some definitions and properties of modular curves; the notation

is the same of [LLZ14] and [Kat04]. As general references to modular curves, we

refer to [DS05] or [DDT97].

We write E[N] for the N-torsion of an elliptic curve E and 〈−,−〉E[N] : E[N]×

E[N]→ µN for its Weil pairing.

Definition 2.1.1 (See [DR73]). For N ≥ 5, let Y (N) the smooth affine curve over Q
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representing the functor from the category of Q-schemes sending

S 7→


isomorphism classes of triples (E,e1,e2),

E elliptic curve over S and

e1,e2 sections of E/S generating E[N]

 .

Remark 2.1.2. The curve Y (N) comes with a universal elliptic curve E → Y (N),

which represents the functor S 7→ {isomorphism classes of ((E,e1,e2),s), with

(E,e1,e2) ∈ Y (N)(S) and s ∈ E(S)}. Moreover, there is a surjective morphism

Y (N)→ µ◦N , where µ◦N is the scheme of primitive N-th roots of unity, given by

(E,e1,e2) 7→ 〈e1,e2〉E[N] ,

where 〈−,−〉E[N] denotes the Weil pairing on E[N]. The fibre of Y (N)(C) over the

point e2πi/N ∈ µ◦N(C) is canonically identified with Γ(N)\H , where H is the upper

half-plane and Γ(N) the principal congruence subgroup of level N in SL2(Z), via

the map

τ 7→ (C/(Z+Zτ),τ/N,1/N)

The group GL2(Z/NZ) acts on Y (N) in the following way

(
a b

c d

)
· (E,e1,e2) = (E,ae1 +be2,ce1 +de2).

Taking quotients of Y (N) by subgroups of GL2(Z/NZ) gives the other modular

curves we are interested in.

Definition 2.1.3. For M,N ≥ 1 and L≥ 5 divisible by M and N, let Y (M,N) be the

quotient of Y (L) by the group

{(
a b

c d

)
∈ GL2(Z/LZ) : a−1≡ b≡ 0 (mod M),c≡ d−1≡ 0 (mod N)

}
.

The curve Y (M,N) represents the functor of triples (E,e1,e2) where e1 has

order M, e2 has order N and e1,e2 generate a subgroup of E of order MN.



2.1. Modular curves and Siegel units 29

Definition 2.1.4. Let Y1(N) be the smooth affine curve over Q representing the

functor

S 7→


isomorphism classes of pairs (E,e),

E elliptic curve over S and

e section of E/S of exact order N

 .

One has that Y1(N) = Y (1,N); moreover the following proposition identifies

Y1(N)×µ◦m with the quotient of Y (L) for a suitable L.

Proposition 2.1.5. [LLZ14, Proposition 2.1.5] If N ≥ 5, m≥ 1 and L≥ 5 is divisible

by both N and m, then we have a map

Y (L)−→ Y1(N)×µ
◦
m

(E,e1,e2) 7→
(
(E, L

N e2),〈 L
me1,

L
me2〉E[m]

)
,

where 〈−,−〉E[m] denotes the Weil pairing and µ◦m is the scheme of primitive m-th

roots of unity. It identifies the target with the quotient of Y (L) by the subgroup of

GL2(Z/LZ) given by

{(
a b

c d

)
∈ GL2(Z/LZ) : c≡ d−1≡ 0 (mod N),ad−bc≡ 1 (mod m)

}
.

Remark 2.1.6. We have µ◦m = Spec(Q(µm)), where Q(µm) is the extension of Q

obtained adding all m-th roots of unity. If X is a variety over Q, then X × µ◦m is

the image of the base change of X over Q(µm) under the forgetful functor from

Q(µm)-varieties to Q-varieties.

We also define a map between certain modular curves, using again the Weil

pairing on elliptic curves.

Definition 2.1.7. Let m,N ≥ 1, we define the morphism tm : Y (m,mN)→ Y1(N)×

µ◦m given by

(E,e1,e2) 7→
(
(E/〈e1〉, [me2]),〈e1,Ne2〉E[m]

)
.
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We notice that, writing explicitly this morphism on the complex points we find

(
C/Z+Zτ,

τ

m
,

1
mN

)
7→
((
C/Z+Z

τ

m
,

1
N

)
,ζm

)

and hence tm is given by τ 7→ τ/m on the upper half plane.

Using the morphism tm one is able to define a morphism as in the following

lemma.

Lemma 2.1.8. [LLZ14, Lemma 2.7.1] Let m,N ≥ 1 with m2N ≥ 5 and j ∈ Z. There

is a unique morphism of algebraic varieties over C

κ j : Y1(m2N)C→ Y1(N)C

such that the diagram of morphism of complex-analytic manifolds

H H

Y1(m2N)(C) Y1(N)(C)

τ 7→τ+ j/m

k j

commutes. The morphism is defined over Q(µm) and depends only on the residue

class of j modulo m.

Proof. The morphism κ j is obtained via the composition of three maps. The

first one is the morphism f : Y1(m2N)× µm → Y (m,mN) coming from the map

Y (m2N)→Y (m,mN) sending (E,e1,e2) 7→ (E/〈mNe2〉, [mNe1], [e2]) which factors

through the quotient of Y (m2N) by the subgroup of matrices
(

u ∗

0 1

)
: u ≡ 1 mod m.

Indeed we have

(
u b

0 1

)
· (E,e1,e2) = (E,ue1 +be2,e2) 7→(E/〈mNe2〉, [mNue1 +mNbe2], [e2])

= (E/〈mNe2〉, [mNe1], [e2]),

where we used the fact that u = 1+km for some integer k and that m2Ne1 = 0. Such

a quotient is identified, thanks to Proposition 2.1.5, with Y1(m2N)× µm. The map



2.1. Modular curves and Siegel units 31

is given on H by the multiplication by m. One then considers the map induced by

the action of
(

1 j

0 1

)
on Y (m,mN), i.e. (E,e1,e2) 7→ (E,e1 + jNe2,e2), given on H

by τ 7→ τ + j. Finally we get κ j as the composition

Y1(m2N)×µm→ Y (m,mN)

(
1 j

0 1

)
−−−→ Y (m,mN)

tm−→ Y1(N)×µm.

This map is given on H by τ 7→ τ + j/m, depends only on the class of j modulo

m and is defined over Q(µm) since all the three maps above commute with the

projections to µm.

2.1.2 Siegel units

We now want to define some special elements in O(Y (N))×, following [Kat04,

§1.1].

Let E be an elliptic curve over a scheme S and c an integer, we denote by Ec

the kernel of the multiplication by c on E, viewed as Cartier divisor on E. Similarly

we write (0) for the zero section of E, viewed as Cartier divisor. We denote by c∗

the pullback by the multiplication by c. Moreover if a is an integer coprime with c,

the multiplication by a restricts to a morphism a : E \Eac→ E \Ec. We then denote

by Na the norm map Na : O(E \Eac)
×→ O(E \Ec)

×.

The key proposition used for defining Kato’s Siegel units is then the following.

Proposition 2.1.9. [Kat04, Proposition 1.3] Let E be an elliptic curve over a

scheme S and c an integer such that (6,c) = 1. Then

(1) there exists a unique cθE ∈ O(E \Ec)
× satisfying:

(i) the divisor of cθE is c2(0)−Ec;

(ii) Na(cθE) = cθE for any integer a coprime with c.

(2) If d is another integer such that (6,d) = 1 then

(dθE)
c2
(c∗(dθE))

−1 = (cθE)
d2
(d∗(cθE))

−1,

as elements in O(E \Ecd)
×.
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(3) For τ ∈H , consider the elliptic curve E =C/(Z+Zτ). Writing cθτ := cθE ,

for z ∈ E \Ec, one has

cθτ(z) = q
1
12 (c

2−1)(−t)
1
2 (c−c2)

γq(t)c2
γq(tc)−1,

where q = e2πiτ , t = e2πiz and

γq(t) = ∏
n≥0

(1−qnt)∏
n≥1

(1−qnt−1).

(4) If h : E→ E ′ is an isogeny of elliptic curves over S of degree coprime to c and

if we denote by h∗ the norm map, then h∗(cθE) = cθE ′ .

(5) If T → S is a morphism, ET := E×S T and pr : ET → E is the base change

morphism, then pr∗(cθE) = cθET .

Consider now E → Y (N) the universal elliptic curve over Y (N) and (α,β ) ∈

(Q/Z)2 \{(0,0)} of order dividing by N and coprime with the integer c, so that we

can write (α,β ) = (a/N,b/N) for a,b ∈ Z. We also define the morphism

ια,β = ae1 +be2 : Y (N)→ E \Ec,

i.e. the morphism that sends an S-point (E,e1,e2) of Y (N) to ((E,e1,e2),ae1 +

be2) ∈ E (S), for S a Q-scheme.

Remark 2.1.10. The image of ια,β is in E \Ec since c is coprime with the order of

(α,β ) = (a/N,b/N) and e1,e2 have order N.

We can finally define Siegel units.

Definition 2.1.11. If (α,β ),c,N are as above we define cgα,β := ι∗
α,β (cθE ) ∈

O(Y (N))×. Furthermore, if c≡ 1 mod N and c 6=±1 we let gα,β := cgα,β ⊗ (c2−

1)−1 ∈ O(Y (N))×⊗Q.

Remark 2.1.12. We will see in § 2.3 that Siegel units can be seen as elements in

the motivic cohomology of the modular curve (see Example 2.3.10).
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We observe that gα,β is independent on the choice of the integer c used in the

definition. Indeed we have the following.

Lemma 2.1.13. The element gα,β is well defined; in other words, if c,d ≡ 1 mod N

and c,d 6=±1 then

cgα,β ⊗ (c2−1)−1 = dgα,β ⊗ (d2−1)−1

Proof. Using the definition of the Siegel units and (2) of Proposition 2.1.9 we get

cgα,β ⊗ (c2−1)−1 = cg(d
2−1)

α,β ⊗ 1
(c2−1)(d2−1)

=
(dgα,β )

c2
ι∗
α,β d∗(cθE )

ι∗
α,β c∗(dθE )cgα,β

⊗ 1
(c2−1)(d2−1)

.

Using then the fact that c,d ≡ 1, one has that ια,β = c · ια,β = d · ια,β and hence we

get

cgα,β ⊗ (c2−1)−1 =
(dgα,β )

c2

cgα,β

(dgα,β )(cgα,β )
⊗ 1

(c2−1)(d2−1)
= dgα,β ⊗ (d2−1)−1.

We will also need some properties of the Siegel units, that we collect in the

following proposition.

Proposition 2.1.14. (i) Let σ ∈ GL2(Z/NZ). Recall that this group acts on

Y (N); moreover for (α,β ) as above we write (α ′,β ′) = (α,β )σ . Then we

have

σ
∗(cgα,β ) = cgα ′,β ′ and σ

∗(gα,β ) = gα ′,β ′.

(ii) Let m≥ 1 be a nonzero integer coprime with 6 and the orders of α,β , then

gα,β (mz) = ∏
β ′

gα,β ′(z),

where the product is over all β ′ ∈Q/Z such that mβ ′ = β .
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(iii) We can write gα,β , with (α,β ) = (a/N,b/N), as function on H , via the

pullback along the map H → Y (N)(C), then we find

gα,β (τ) = q1/12−a/2N+(1/2)(a/N2) ·∏
n≥0

(1−qnqa/N
ζ

b
N) ·∏

n≥1
(1−qnq−a/N

ζ
−b
N ),

where q = e2πiτ .

Proof. (i) The universal property of the elliptic curve E /Y (N) says that for any

triple (E,e1,e2), where E is an elliptic curve over S and e1,e2 are sections of E

over S generating E[N], there exists a unique morphism S → Y (N) such that E

is isomorphic to the pullback E ×Y (N) S, i.e. we have the following commutative

diagram
E ' E ×Y (N) S E

S Y (N).

pr

Moreover an S-section of E is given by x=(E,e1,e2,P) where (E,e1,e2)∈Y (N)(S)

and P ∈ E(S), i.e. we have the following diagram

S

E E

S Y (N).

x

id

P
pr

Using Proposition 2.1.9 (5), we get that cθE (x) = x∗(cθE ) = P∗pr∗(cθE ) =c θE(P).

Writing (α,β ) = (m/N,n/N) and σ =
(

a b

c d

)
and considering (E,e1,e2) ∈Y (N)(S)

we find

(ια,β ◦σ)((E,e1,e2)) = (E,ae1 +be2,ce1 +de2,(ma+nc)e1 +(mb+nd)e2),

(ια ′,β ′)(E,e1,e2) = (E,e1,e2,(ma+nc)e1 +(mb+nd)e2).



2.1. Modular curves and Siegel units 35

Hence we obtain, considering the two Y (N)-sections of E ια,β ◦σ and ια ′,β ′ ,

σ
∗(ια,β )

∗
cθE ((E,e1,e2))= cθE((ma+nc)e1+(mb+nd)e2)= cθE ((ια ′,β ′)(E,e1,e2)),

for any S-section (E,e1,e2), and therefore the equality σ∗(cgα,β ) = cgα ′,β ′ . The

second equality descends from this, by definition of the elements gα,β ,gα ′,β ′ .

(iii) The formula is obtained via direct computation using the analytic descrip-

tion of theta elements (Proposition 2.1.9 (3)), see [Kat04, 1.9].

(ii) We show how, using point (iii), one can deduce (ii). First of all, writing

(α,β ) = (a/N,b/N), we have that the product on the RHS of the equality runs

through the elements β ′ = b/mN + i/m for 0≤ i≤ m−1. Then we get

∏
β ′

gα,β ′(τ) = qm(1/12−a/2N+(1/2)(a/N2)) ·∏
n≥0

m−1

∏
i=1

(1−qnqa/N
ζ

b
Nmζ

i
m)

·∏
n≥1

m−1

∏
i=1

(1−qnq−a/N
ζ
−b
Nmζ

i
m).

We now use the equality xm−αm = ∏
m−1
i=1 (x−αζ i

m), which gives, for x = 1 and

α = qnqa/Nζ b
Nm (α = qnq−a/Nζ

−b
Nm respectively),

m−1

∏
i=1

(1−qnqa/N
ζ

b
Nmζ

i
m) = (1−qnmqma/N

ζ
b
N),

m−1

∏
i=1

(1−qnq−a/N
ζ
−b
Nmζ

i
m) = (1−qnmq−ma/N

ζ
−b
N ).

So we obtained ga/N,b/N(mτ) = ∏β ′ gα,β ′(τ).

Lemma 2.1.15. Let m and (α,β ) be as in (ii) of the previous Proposition. We have

the equality

gα,β = ∏
α ′,β ′

gα ′,β ′,

where the product runs over (α ′,β ′) such that (mα ′,mβ ′) = (α,β ).

Proof. The formula is obtained using Proposition 2.1.9(1.ii). See [Kat04, Lemma

1.7 (2)].
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Remark 2.1.16. Viewing Y1(N) as quotient of Y (N) by the subgroup U ′ = {
(

u ∗

0 1

)
:

u ∈ (Z/NZ)×} of GL2(Z/NZ) as in Definition 2.1.3, one can use point (i) of the

previous proposition to see that g0, b
N
∈ O(Y1(N))×⊗Q. Indeed for any σ ′ ∈ U ′,

one gets (σ ′)∗g0, b
N
= g0, b

N
. In particular we have g0, b

m2N
∈ O(Y1(m2N))×⊗Q and

g0, b
mN
∈ O(Y1(mN))× ⊗Q. We can then regard these Siegel units via pullback

along Y1(m2N)× µm → Y1(m2N) and Y (m,mN)→ Y1(mN) as elements g0, b
m2N
∈

O(Y1(m2N)×µm)
×⊗Q and g0, b

mN
∈ O(Y (m,mN))×⊗Q.

We conclude this discussion about Siegel units by proving a lemma that will

be useful later. First recall the definition of f , the morphism used in the proof of

Lemma 2.1.8. It came from the morphism

Y (m2N)→ Y (m,mN)

(E,e1,e2) 7→ (E/〈mNe2〉, [mNe1], [e2]).

On complex points it is defined by τ 7→mτ . Moreover it factors through the quotient

by the subgroup U defining Y1(m2N)×µm as quotient of Y (m2N) as in the previous

remark. Hence f defines a map

f : Y1(m2N)×µm→ Y (m,mN). (2.1.1)

Lemma 2.1.17. Viewing g0,1/mN ∈ O(Y (m,mN))× and g0,1/m2N ∈ O(Y1(m2N)×

µm)
× as in remark 2.1.16, we have

g0,1/mN = f∗g0,1/m2N .

Proof. We write U and U ′ for the two subgroups of GL2(Z/m2NZ) given by

U =
{(

a b

c d

)
: c≡ d−1≡ 0 (m2N),a≡ 1 (m)

}
.

U ′ =
{(

a b

c d

)
: c≡ 0 (m2N),a≡ 1 (m),d ≡ 1 (mN)

}
.

We have U ⊂U ′ and we identify the quotient of Y (m2N) by U with Y1(m2N)×µm.
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We also consider the set of representatives of U/U ′ given by the matrices
(

1 0

0 1+mNt

)
,

where 0≤ t < m. We then find that the pushforward of g0,1/m2N via the natural map

h : Y1(m2N)×µm→U ′ \Y (m2N) is given by

m−1

∏
t=0

(
1 0

0 1+mNt

)
g0,1/m2N(τ) =

m−1

∏
t=0

g0,1/m2N+t/m(τ) = g0,1/mN(mτ),

where we used Proposition 2.1.14 (i) and (ii) in the first and second equality respec-

tively. To conclude we notice that conjugation by
(

m 0

0 1

)
sends U ′ to

U ′′ =
{(

a b

c d

)
: c≡ d−1≡ 0 (mN),a−1≡ b≡ 0 (m)

}
,

which is the subgroup defining Y (m,mN), i.e. U ′′ \Y (m2N) = Y (m,mN). Writing

σm for the map U ′ \Y (m2N)→ Y (m,mN) defined by the multiplication by
(

m 0

0 1

)
and using (σm)∗ = (σm−1)∗ we get

(σm ◦h)∗g0,1/m2N(τ) = (σm−1)∗g0,1/mN(mτ) = g0,1/mN(τ).

Since σm ◦h = f , we are done.

2.2 Hilbert modular surfaces
In this section we recall some definitions and properties of Hilbert modular surfaces.

We then define embeddings of modular curves into these surfaces. These can be

thought as degenerate case of the diagonal embedding (and its perturbations)

Y1(N)×µm→ Y1(N)2×µm,

used in [LLZ14] to define Beilinson–Flach elements.

2.2.1 Definitions and the closed embedding of the modular curve

We start by fixing some notation. We let F be a real quadratic field, we denote

by OF its ring of integers, by d its different ideal and we fix a set {σ1,σ2} of real

embeddings of F ; if λ ∈ F , we write λi = σi(λ ). Let Gm be the multiplicative
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group. We then define following algebraic groups.

Definition 2.2.1. We define the algebraic groups D := ResF
QGm, G := ResF

QGL2

and G∗ := G×D,detGm.

Remark 2.2.2. Notice that we have a natural embedding GL2 ↪→ G∗. In the de-

generate case where F = Q⊕Q, one recovers the embedding GL2 ↪→ GL2×GL2.

We now define a Shimura variety associated to it (corresponding to the product of

two modular curves in the degenerate case) and then get a closed embedding of the

modular curve in it.

Let HF be the set of the elements of F⊗C of totally positive imaginary part;

it can be identified with two copies of the upper half plane H ×H . We have a

natural action of G(R)+ (the elements of totally positive determinant) given by the

two real embeddings, namely for (τ1,τ2) ∈HF and
(

a b

c d

)
∈ G(R)+

(
a b

c d

)
· (τ1,τ2) =

(
a1τ1+b1
c1τ1+d1

, a2τ2+b2
c2τ2+d2

)
We will denote by A f the finite adeles of Q.

Definition 2.2.3. Let H ∈ {G,G∗,GL2}. An open compact subgroup U ⊂ H
(
A f
)

is sufficiently small if for every h ∈ H
(
A f
)

the quotient

H(Q)+∩hUh−1

U ∩{
(

u 0

0 u

)
: u ∈ O×F }

acts without fixed points on HF (or on H if H = GL2).

Definition 2.2.4 (Cfr. [Del79]). For U∗ (respectively U , UQ) an open compact

subgroup of G∗(A f ) (respectively of G(A f ), GL2(A f )), we denote by YG∗(U∗) (re-

spectively YG(U),YGL2(UQ)) the complex manifold of dimension 2 (respectively 2

and 1) given by

YG∗(U∗) = G∗(Q)+ \ [G∗(A f )×HF ] / U∗,

YG(U) = G(Q)+ \ [G(A f )×HF ] / U,
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YGL2(UQ) = GL2(Q)+ \ [GL2(A f )×H ] / UQ.

It is known that, when the considered subgroup is sufficiently small, such complex

manifolds admit a unique structure of smooth quasi-projective variety defined over

Q. By abuse of notation we write YG∗(U∗),YG(U),YGL2(UQ) also to denote suchQ-

varieties. The analytification of their complex points is given by the above quotients.

Remark 2.2.5. These are instances of a more general class of varieties, called

Shimura varieties, that descend to varieties defined over a number field, called reflex

field, see [Del79, Mil05]. For more details about this point of view in the Hilbert

modular variety case (i.e. when considering the groups G,G∗ for a totally real field)

see for example [Gor02, Edi01, BG20].

Let ÔF = OF ⊗Z Ẑ, where Ẑ denotes the profinite completion of Z. We now

define specific level subgroups U .

Definition 2.2.6. Let M,N be non-zero ideals of OF . We define

U(M,N) :=
{

γ ∈ GL2(ÔF) : γ ≡ 1 mod
(

M M

N N

)}
and U∗(M,N) := U(M,N)∩G∗. We also write U1(N) := U(1,N) and U∗1 (N) =

U∗(1,N). One defines similarly groups UQ(M,N) ⊂ GL2(A f ) for integers M,N.

Considering a third ideal L, let

U(M,N(L)) :=
{

γ ∈ GL2(ÔF) : γ ≡ 1 mod
(

M M

NL N

)}
U(M(L),N) :=

{
γ ∈ GL2(ÔF) : γ ≡ 1 mod

(
M ML

N N

)}
.

One defines similarly groups UQ(M,N(`)),UQ(M(`),N) ⊂ GL2(A f ) for integers

M,N, `.

Remark 2.2.7. If N is sufficiently large, then the subgroups U∗1 (N),U1(N) are

sufficiently small. More precisely, this follows from ([Dim09, Lemma 2.1(iii)-(iv)],

by assuming that N is coprime to 6 and the discriminant of F and that N is divisible

by a prime satisfying the conditions of Lemma 2.1(iii) of op. cit. We will always
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assume this to be the case. Moreover, working with GL2, we recover the modular

curves of the previous sections, namely YQ(UQ(M,N)) = Y (M,N).

We write Y ∗1 (N) =YG∗(U∗1 (N)) and Y1(N) =YGL2(UQ(1,N)). In particular the

first is a smooth surface and latter is the modular curve of Definition 2.1.4. If N is

an ideal such that N∩Z= (N), we have UQ(1,N) =U∗1 (N)∩GL2(A f ).

The action of GL2(F) on HF uses the two embedding of F , so that we find

that the action of γ ∈ Γ1(N) on H ×H restricted to the subgroup Γ1(N) coincides

with the usual action of Γ1(N) on each component, since σ1,σ2 fix Z.

So the embedding of algebraic groups GL2 ↪→G∗ induces a closed embedding

ι : Y1(N) ↪→ Y ∗1 (N),

which is precisely the one we were aiming for.

We now describe the embedding ι on complex points. First of all, notice that ι

commutes with the natural determinant maps

det : Y1(N)→ (Q×)+\A×f /1+NẐ' µN ,

det : Y ∗1 (N)→ (Q×)+\A×f /(1+NÔF)∩ Ẑ' µN .

Moreover, fixing a primitive complex N-th root of unity ζ as in Remark 2.1.2, taking

fibres over ζ of Y1(N)(C) and Y ∗1 (N)(C), yields a map

ι : GL2(Q)+∩U1(N)\H ↪→ G∗(Q)+∩U∗1 (N)\H ×H .

Recalling that for a Q scheme S we have ResF
QG(S) = G(S×Q F), we get

D(Q) =Gm(Q⊗F) = F× and G(Q) = GL2(Q⊗F) = GL2(F). So we find

G∗(Q) = GL2(F)⊗F×Q× = {γ ∈ GL2(F) : detγ ∈Q},

G∗(Q)+ = {γ ∈ GL2(F) : detγ ∈Q≥0}.
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Moreover, using the fact that ÔF ∩F = OF and (ÔF)
×∩Q≥0 = {+1}, we get

G(Q)+∩U1(N) =
{

γ =
(

a b

c d

)
∈ GL2(OF)

+ : a≡ d ≡ 1,c≡ 0 mod N
}

;

Γ1(N) := G∗(Q)+∩U∗1 (N) =
{

γ =
(

a b

c d

)
∈ SL2(OF) : a≡ d ≡ 1,c≡ 0 mod N

}
.

Similarly, using, Ẑ∩Q≥0 = {+1}, as we were anticipating, we get

GL2(Q)+∩U1(N) =
{

γ =
(

a b

c d

)
∈ SL2(Z) : a≡ d ≡ 1,c≡ 0 mod N

}
= Γ1(N) = Γ1(N)∩GL2(Q)+.

Hence, on complex points, the embedding ι is given by the diagonal map H →

H ×H

ι : Γ1(N)\H −→ Γ1(N)\H ×H

τ 7−→ (τ,τ).

One can similarly describe closed embeddings ι : Y (M,N) ↪→ Y ∗(M,N) for ideal

M,N such that (M) =M∩Z and (N) =N∩Z.

We now fix a ∈ OF and consider the matrix
(

1 a

0 1

)
. If the ideal M divides the

ideal N, the subgroup U∗(M,N) is normalized by this matrix, i.e. for γ ∈U∗(M,N)

(
1 a

0 1

)
· γ ·
(

1 α

0 1

)−1
∈U∗(M,N).

Definition 2.2.8. For a ∈OF , M dividing N, we define ua to be the endomorphism

of Y ∗(M,N) induced by multiplication by the matrix
(

1 a

0 1

)
, i.e. given on the com-

plex points by τ = (τ,τ ′) 7→ τ +a = (τ +a1,τ
′+a2), for τ ∈HF .

Remark 2.2.9. Notice that the map ua is well defined because

ua(γ · τ) =
(

1 a

0 1

)
γ · τ =

(
1 a

0 1

)
γ

(
1 a

0 1

)−1(
1 a

0 1

)
· τ = γ

′ ·ua(τ),

for γ ′ ∈ Γ(M,N).
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2.2.2 Interpretation as moduli space

Hilbert modular surfaces of the form Y ∗(M,N) are known to be fine moduli space

of polarised abelian surfaces with some level structure, in complete analogy with

modular curves.

2.2.2.1 Preliminaries on polarized abelian varieties with real multi-

plication

We start with some general definitions and results about the objects that the Hilbert

modular surfaces will parametrize. We keep the discussion more general, consid-

ering F a totally real field of degree g over Q. We will moreover stick to the case

of complex abelian varieties, since we will only describe the complex points of the

Hilbert modular varieties. We will follow closely [Gor02, § 2].

Definition 2.2.10. A complex abelian variety with real multiplication (also denoted

by RM) by OF is a g-dimensional abelian variety A over C with a fixed embedding

i : OF ↪→ End(A).

Example 2.2.11. The easiest example is the one of the (iso-simple) abelian variety

obtained by taking an elliptic curve E over C and considering the abelian variety

E⊗ZOF ∼= Eg,

whose complex points are given by E(C)⊗OF and where the isomorphism is ob-

tained by fixing a Z-basis of OF . The action of OF on the abelian variety is the

canonical right OF action. In the case g = 2, writing F =Q(
√

D) and choosing the

Z-basis of OF {1,
√

D} if D≡ 2,3 (mod 4) and {1,(1+
√

D)/2} if D≡ 1 (mod 4),

some easy computations show that the endomorphism obtained by the action of
√

D

and (1+
√

D)/2 respectively on E2 is given by the matrix

(
0 D

1 0

)
and

(
0 (D−1)/4

1 1

)
respectively.
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Remark 2.2.12. If (A, i) is a complex abelian variety with RM by OF , so is its dual.

This can be seen by defining an embedding OF ↪→ End(A∨) simply by taking for

each λ ∈ OF the dual map of i(λ ).

We now proceed with the construction of some complex abelian variety with

RM. Take τ ∈ H g and define Λτ := OFτ + OF . First of all we notice that

Dedekind’s lemma yields the R-linear independence of

(σ1(α1), . . . ,σg(α1)), · · · ,(σ1(αg), . . . ,σg(αg))

in Rg, for αi a basis of OF . Hence Λτ is a lattice in Cg. Then one can show that for

any r ∈ (d−1)+

Hr,τ(x,y) :=
g

∑
i=1

Im(τi)
−1

σi(r)xiyi, (2.2.1)

where z,z′ ∈ Cg, is a Riemann form for Λτ (see [Gor02, Lemma 2.8,2.9] for a

proof). Using the standard connection between Riemann forms and polarizations,

we get that the complex torus Aτ := Cg/Λ is polarized and hence is a complex

abelian variety with RM by OF .

Now we give the last definitions needed in order to state the final result.

Definition 2.2.13. Let (A, i) an abelian variety with RM by OF . We define

MA := {λ : A→ A∨ : λ = λ
∨ and λ is OF -linear},

M+
A := {λ ∈MA : λ is a polarization}.

In the case of A = Aτ we have that the map sending r 7→ Hr,τ gives an iso-

morphism mτ : (d−1,(d−1)+)
'−→ (MA,M

+
A ). We have the following result, see for

example [Gor02, Theorem II.2.17]].

Theorem 2.2.14. (1) The isomorphism classes of complex abelian varieties (A, i)

with RM by OF such that there exists an isomorphism (MA,M
+
A )

'−→

(d−1,(d−1)+) are parametrized by the quotient GL2(OF)
+ \H g.
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(2) The isomorphism classes of complex abelian varieties (A, i,m) with RM by OF

with a fixed isomorphism m : (MA,M
+
A )

'−→ (d−1,(d−1)+) are parametrized

by the quotient SL2(OF)\H g.

2.2.2.2 The universal abelian variety over the Hilbert modular sur-

face

We know go back to the setting of 2.2.1. We can describe explicitly the universal

abelian variety over YG∗(M,N). We start with the following definition.

Definition 2.2.15. (i) Let P be the subgroup of ResF
QGL3 consisting of the ma-

trices of the form 
1 r s

0 a b

0 c d


and let P∗ the subgroup with

(
a b

c d

)
∈ G∗.

(ii) Let CF := F⊗QC'C2 and JF :=HF×CF . We define an action of P(R)+

on JF via 
1 r s

0 a b

0 c d

 · (τ,z) =
(

aτ +b
cτ +d

,
z+ rτ + s

cτ +d

)
.

We then write, for V ∗ ⊂ P∗(A f ) an open compact,

A(V ∗) := P∗(Q)+ \ [P∗(A f )×JF ] / V ∗.

We first of all notice that the action of P∗(Q)+ on HF is compatible with the

action of G∗(Q)+ on it. Moreover if U∗ is the image of V ∗ in G∗, the natural map

JF →HF induces

A(V ∗)→ YG∗(U∗).

The following result is [LLZ18, Proposition 2.5.2].
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Theorem 2.2.16. IF V ∗ is given by the elements of P∗ such that
(

a b

c d

)
∈ U∗ ⊂

G∗(Ẑ) and r,s ∈ ÔF , then A(U∗) := A(V ∗) is an abelian variety over YG∗(U∗) with

endomorphisms by OF .

Remark 2.2.17. The above definition makes sense also for a totally real field F of

degree greater than 2. Similarly the stated theorem holds in general.

We will not go into the proof of this theorem, but we are going to look in

details what happens when we take one of the congruence subgroups U∗ defined

above. The easiest case is the case U∗ = GL2(ÔF)∩G∗ =U∗(1,1). Proceeding as

we have done before we get

Y ∗ := YG∗(U∗)(C) = SL2(OF)\HF .

Taking V ∗ as in the theorem, one similarly finds A := A(U∗)(C) =V \ (HF ×CF),

where

V =




1 r s

0 a b

0 c d

 : r,s ∈ OF ,

a b

c d

 ∈ SL2(OF)

 .

We want to view Y ∗ as moduli space of certain abelian varieties. To do so we

consider the map A→Y ∗ and look at its fibres. Take τ = (τ,τ ′) ∈HF , we write Aτ

for the fibre over [τ] ∈ Y ∗.

Claim. A→Y ∗ parametrizes isomorphism classes of complex abelian surfaces with

RM by OF .

Proof of Claim. The fibres Aτ , for every τ ∈ HF , are isomorphic as complex

abelian variety with RM to the 2-dimensional complex tori C2 / OFτ ⊕OF . We

then essentially use Theorem 2.2.14. All complex tori isomorphic as abelian vari-

ety with fixed polarization and with RM by OF to C2 / OFτ⊕OF = C2/Λτ are of

the form C2 / OF
aτ+b
cτ+d ⊕OF for

(
a b

c d

)
∈ SL2(OF), where the isomorphism is given

by z 7→
(

c1τ +d1 0

0 c2τ ′+d2

)−1
·z = z

cτ+d . Now, the fibre over τ is the quotient ofC2 by O2
F ,

were the action is given by (r,s) · z = z+ rτ + s, hence precisely the complex torus
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C2/Λτ . Changing the representative for the class [τ], i.e. considering aτ+b
cτ+d , we

find C2 modulo the action of O2
F given by (r,s) · z = z+rτ+s

cτ+d , hence we get precisely

(cτ +d)−1 ·C2/Λτ = C2 / OF
aτ+b
cτ+d ⊕OF .

Remark 2.2.18. The same can be done by replacing P by an analogous subgroup

PQ of GL3 /Q and JF by H ×C. For UQ = GL2(Ẑ) one then finds the universal

elliptic curve over Y (1).

Again as in the case of modular curves, one can rearrange the above reason-

ing to describe the Hilbert modular surfaces as moduli space parametrizing triples

(A, ιM, ιN) with A polarized abelian surface with RM by OF as above and ιM, ιN

embeddings of the form

ιM : M−1OF/OF ↪→ Ators,

ιN : N−1OF/OF ↪→ Ators.

In particular if for example M= (M) where M is an integer, this gives a point P of

order M of A.

Now recall that for an abelian variety A there is a non-degenerate alternating

bilinear pairing

〈 , 〉′A[M] : A[M]×A∨[M]→ µM,

where A[M] and A∨[M] denote the M-torsion of A and A∨ respectively. If A is

polarized and has endomorphism by OF , this induces an OF -linear pairing

〈 , 〉A[M] : A[M]×A[M]→ µM⊗OF .

If we consider the Shimura variety corresponding to G∗, we get that, considering

for example Y ∗(M,MN), i.e. the one corresponding to the subgroup U∗(M,MN),

for M integer, it parametrizes triples (A,P, ι) where A is as above, P is a M-torsion

point of A and ι is an embedding ι : (MN)−1OF/OF ↪→ Ators such that
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(i) the pairing considered above gives 〈P, ι(1/M)〉 ∈ µM,

(ii) P and ι(1/M) are independent over OF .

In particular condition (i) reflects the fact that the determinant map is defined with

target in Gm and not in ResF
QGm. Hence it induces

Y ∗(M,MN)→ µ
◦
M

(A,P, ι) 7→ 〈P, ι(1/M)〉A[M].

Using this, we are now able to define a map corresponding to the one in Definition

2.1.7 for modular curves.

Definition 2.2.19. For N ideal of OF and M ≥ 1 integer, we define

tM : Y ∗(M,MN)−→ Y ∗1 (N)×µ
◦
M

(A,P, ι) 7−→ ((A/〈P〉,M · ι) , 〈P, ι(1/M)〉A[M])

Remark 2.2.20. On complex points the map tM is given by τ 7→ τ

M , for τ ∈HF .

Proposition 2.2.21. For b ∈ (Z/MZ)×, the map tM intertwines the action of
(

b 0

0 1

)
on Y ∗(M,MN) with the automorphism 1×σb on Y ∗1 (N)×µ◦M, where σb : ζ 7→ ζ b.

Proof. We need to prove the commutativity of the following diagram

Y ∗(M,MN) Y ∗(M,MN)

Y ∗1 (N)×µ◦M Y ∗1 (N)×µ◦M,

tM tM

1×σb

where the top arrow is the morphism given by the action of
(

b 0

0 1

)
, sending (A,P, ι) 7→

(A,bP, ι). Since b ∈ (Z/MZ)× and P has order M, we have 〈P〉= 〈bP〉. So we find

tM((A,bP, ι)) = [(A/〈P〉,M · ι),〈bP, ι(1/M)〉] = [(A/〈P〉,M · ι),〈P, ι(1/M)〉b],
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using the bilinearity of the pairing. On the other side we get

(1×σb)(tM((A,P, ι))) = (1×σb)([(A/〈P〉,M · ι),〈P, ι(1/M)〉])

= [(A/〈P〉,M · ι),〈P, ι(1/M)〉b].

2.2.2.3 The action of G on the abelian surface

Let V ∗ = ÔF
2oU∗, where U∗ ⊂ G∗(A f ) is sufficiently small. In other words, V ∗

is as in Theorem 2.2.16. By abuse of notation, we will denote by A(U∗) the abelian

variety A(V ∗)→ Y ∗(U∗). Consider

g ∈ G := G(Q)+G∗(A f )⊂ G(A f ) such that g−1 has entries in ÔF .

Assuming that both U∗ and gU∗g−1 are contained in G(Ẑ) we can define (see

[LLZ18, Definition 2.5.4]) an OF -isogeny of abelian varieties over Y ∗(U∗). Firstly

note that by [LLZ18, Remark 2.5.3], we can write

A(U∗) = P∗(Q)+ \ [P×JF ] / V ∗,

where P is the subgroup of P(A f ) with
(

a b

c d

)
∈ G . So we have a left action of g as

above on A(U∗). We then define the OF -isogeny

Φg : A(U∗)→ g∗A
(
gU∗g−1) .

given by

A(ÔF
2oU∗)

(
1 0

0 g

)
−−−→ A((ÔF

2 ·g−1)ogU∗g−1)→ A(ÔF
2ogU∗g−1)

where the second map is given by the inclusion (ÔF
2 ·g−1)⊂ ÔF

2
. Such isogenies

satisfy the relation

Φg1g2 = g∗2 (Φg1)◦Φg2, (2.2.2)
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when all the terms are defined. Moreover if g =
(

x−1 0

0 x−1

)
for x ∈ OF , then

gU∗g−1 = U∗ and Φg is simply the multiplication by x on A(U∗). Therefore,

using this, we can extend the definition of Φg for any g ∈ G as elements of

Hom(A(U∗) ,g∗A
(
gU∗g−1))⊗Q.

2.3 Motivic cohomology
In this section we recall some properties of motivic cohomology and recall the def-

inition of motivic cohomology with coefficients (i.e. with coefficients over relative

Chow motives). We then define the coefficients sheaves we will be working with.

2.3.1 Motivic cohomology

Let X be an object in the category Sm of smooth variety over a field k ⊂ C. Then

Voevodsky defined motivic cohomology as homomorphisms in the triangulated cat-

egory DM−(k) of motivic complexes. For a construction of this category see

[Voe02]; he equips it with a functor M : Sm→ DM−(k) and with a Tate object

Q(1).

Definition 2.3.1. The motivic cohomology of X as above is defined by

H i
mot(X ,Q( j)) := HomDM−(k)(M(X),Q( j)[i]).

Voevodsky shows that this motivic cohomology group can be identified with

hypercohomology with respect to the Zariski topology, more precisely

H i
mot(X ,Q( j))'Hi

Zar(X ,C•(Z( j))),

where C•(Z( j)) is the Suslin complex of sheaves in the Zariski topology (see

[Voe02] for more details).

The idea of motives and motivic cohomology is in some sense to collect to-

gether the information coming from all Weil cohomology theories T . Among

the others we can consider T ∈ {ét,dR,B}, continuous étale, de Rham and Betti

cohomology theories. We write QT for the trivial coefficient sheaf of the coho-
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mology theory T and QT (n) for the n-th power of QT , where in our examples

Qét(1) = Qp(1),QdR(1) = k,QB(1) = 2πiQ. All these cohomology theories are

then related by natural maps, the comparison isomorphisms, that give

H i
dR(X ,k)⊗kC' H i

B(X(C),Q)⊗QC

H i
ét(X ,Qp)' H i

B(X(C),Q)⊗QQp.

The first isomorphism is a standard result, for the proof of the second one see for

example [Mil, I.21].

To relate then motivic cohomology groups to the “more traditional” ones, there

are regulator maps

regT : H i
mot(X ,Q(n))→ H i

T (X ,QT (n)),

all compatible with comparison isomorphisms. For this see [Hub00].

We can similarly construct motivic cohomology with “non trivial coefficient

sheaves”, using the formalism of relative Chow motives of [DM91]. Consider S

a smooth, connected, quasiprojective k-variety and the category of relative Chow

motives over S, denoted by CHM(S)Q. It is a pseudo-abelian tensor category. For

any field of characteristic zero one can similarly consider CHM(S)L, defined as the

pseudo-abelian envelope of CHM(S)Q⊗L. The objects of such category are triples

(X , p,n), where X is a smooth projective S-variety of relative dimension m, p is an

idempotent element of CHm(X ×S X) and n ∈ Z. The Tate object (S, id,1) will be

denoted by Q(1) or L(1).

This category comes equipped with a contravariant functor from the category

SmPr(S) of smooth projective S-schemes

M : SmPr(S)→ CHM(S)Q.

One can take FT the realisation of an object in F ∈ CHM(S)L in a cohomology

theory T as above. This takes value in the category of sheaves on S with extra
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structure depending on T . This is why we will often, by abuse of notation, refer to

an object F as motivic sheaf. In particular, if T = ét is the p-adic étale cohomology

and L is a p-adic field, Fét is a lisse étale L-sheaf over S. The sheaves FT are

naturally graded objects, in particular Fét = ⊕ jGr jFét and, if F = M(X), then

Gr jFét = H j
ét (X/S) the relative étale cohomology sheaf of X/S of degree j.

Theorem 2.3.2 ([DM91]). Let A/S be an abelian variety. Then there is a canonical

decomposition in the category of relative Chow motives over S

M(A) =
2dimA⊕

i=0

Mi(A),

such that for all the realisations Gr j Mi(A)T = 0 if i 6= j.

We are now ready to define motivic cohomology groups with coefficients in

F = (X , p,n), an object in the category CHM(S)Q as above. We assume that the

realisations of F are non-zero only in one degree r and let

H i
mot(S,F ( j)) := p∗H i+r+2n

mot (X ,Q( j+n)),

where recall that p∗ is the endomorphism on the cohomology of X given by

p ∈CHm(X×S X).

As above, we find regulator maps

regT : H i
mot(S,F ( j))→ H i

T (S,FT ( j)),

and similarly when extending to a field extension L.

If ι : S ↪→ T is a closed immersion of codimension d, there exists a pullback

functor

ι
∗ : CHM(T )L→ CHM(S)L

and a Gysin map

ι∗ : H i
mot(S, ι

∗F ( j))→ H i+2d
mot (T,F ( j+d)), (2.3.1)
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For more details see [LLZ18, § 3.1d], [MVW06, Theorem 15.15].

2.3.2 Relative Chow motives over modular curves and Hilbert

modular surfaces

We will be interested in sheaves over the modular curve and over the Hilbert

modular surface arising from universal modular abelian varieties over them. We

first fix some notation. Given a Shimura datum (G,X), we write YG for the in-

verse limit over K, compact open subgroups of G(A f ), of the varieties YG(K) :=

G(Q)\G(A f )×X/K. Similarly every time we consider a cohomology group for

YG we mean the limit of the cohomology groups of YG(K). Throughout this section

we will write H = GL2. We work with G = H,G∗,G, for which X is the Siegel

plane C \R in the first case and two copies of the Siegel plane in the second and

third ones (with action of G∗(Q),G(Q) given by the two real embeddings σ1,σ2).

We obtain a smooth curve YH , which is the infinite level modular curve, and smooth

surfaces YG∗,YG which are infinite level Hilbert modular surfaces. They are defined

over Q.

If G = H,G∗, then the corresponding finite level Shimura varieties are of PEL

type and, using the functor of [Anc15, Theorem 8.6], one can associate to repre-

sentations of G a relative Chow motive over YG(K) for any sufficiently small level

K. The following result is due to Ancona and is a special case of [Anc15, Theorem

8.6], which applies more generally to PEL type Shimura varieties.

Theorem 2.3.3 ([Anc15]). Let G = H,G∗ and K a sufficiently small subgroup of

G. There is a functor

FG : RepQ(G)→ CHM(YG(K))

from the category of representations of G over Q to the category of relative Chow

motives over YG(K) such that

• FG preserves tensor products and duals;

• FG(det) is the motive Q(1), where det : G→Gm;
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• if V is the dual of the standard representation of G, then FG(V ) = M1(A ),

where A is the universal abelian variety over YG(K);

• for any prime p, the p-adic étale realisation of FG(V ) is the étale lisse sheaf1

associated to V ⊗Qp seen as a left K-representation via K ↪→ G(A f ) �

G(Qp).

One can clearly extend the functors of the above theorem replacing Q by a

larger extension L.

The following result (see [Tor19, Theorem 9.7], where it is proved more gen-

erally for admissible pairs of Shimura data) explains how the functors behave with

respect to the Gysin map (2.3.1) induced by the closed immersion

ι : YH(K∩H(A f ))→ YG∗(K),

for K a sufficiently small subgroup of G∗(A f ).

Theorem 2.3.4 ([Tor19]). The following diagram is commutative up to natural iso-

morphism

RepQ(G
∗) CHM(YG∗(K))

RepQ(H) CHM(YH(K∩H(A f ))),

|H

FG∗

ι∗

FH

where the first vertical arrow denotes the restriction to H and ι∗ is the pullback

functor.

This theorem, combined with the existence of the Gysin map (2.3.1), tells us

that whenever W ∈ RepQ(H) is a direct summand of the restriction to H of a repre-

sentation V ∈ RepQ(G
∗), the pushforward by ι defines a map

ι∗ : H i
mot(YH(K∩H(A f )),FH(W ))→ H i

mot(YH(K∩H(A f )), ι
∗(FG∗(V ))

→ H i+2
mot (YG∗(K),FG∗(V )(1)). (2.3.2)

1See for example [Nek18, 0.4].
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This kind of maps will be used in § 4.7.1 for the definition of Asai–Flach classes. In

the easiest case, if we take V to be the determinant representation the map is simply

ι∗ : H i
mot(YH(K∩H(A f )),Q(1))→ H i+2

mot (YG∗(K),Q(2)) (2.3.3)

and taking i = 1 it will be used in § 3.1 to define Asai–Flach classes in the trivial

coefficients case.

We now briefly go over the definitions of the relative Chow motives we will be

working with.

2.3.2.1 Modular curves

We consider E → Y , where Y = YH(K) is the modular curve of level K, K is a

sufficiently small open compact of H(A f ) and E is the universal elliptic curve over

Y .

Definition 2.3.5. Let k≥ 0 be an integer. We define TSymk HL(E ) to be the object

of CHM(Y )L given by the image of the functor FH of the TSymk power2 of the

standard representation of GL2.

By the properties of Ancona’s functor, TSymk HL(E ) is the k-th symmetric

power of M1(E )(1) = M1(E )∨, where M1(E ) is given by the decomposition of

Theorem 2.3.2 and (1) denotes the twist by L(1).

2.3.2.2 Hilbert modular surfaces

Similarly, consider A →Y ∗, where Y ∗ =YG∗(K∗) is the Hilbert modular surface of

level K∗, K∗ is a sufficiently small open compact of G∗(A f ) and A is the universal

abelian surface over Y ∗. Recall that OF acts on A by endomorphisms. Consider

the following object of CHM(Y ∗)L

HL(A ) = M3(A )(2) = M1(A )∨.

2TSymk(V ) is defined to be the submodule of invariants under the permutation actions of the
symmetric group Sk in the k-fold tensor product V ⊗ ·· · ⊗V . It is the dual of the more familiar
module Symk(V∨) of Sk-coinvariants of V∨⊗·· ·⊗V∨.



2.3. Motivic cohomology 55

By enlarging L if necessary, we assume we have two non-zero embeddings θi : F ↪→

L. Then the object considered above decomposes as

HL(A ) = HL(A )(1)⊕HL(A )(2),

where HL(A )(i) is the direct summand where, for x ∈ OF , we have [x]∗ = σi(x)

(see [LLZ18, § 3.2b] for more details).

Definition 2.3.6. Let k,k′ ≥ 0 be integers. We define TSym[k,k′]HL(A ) to be the

object of CHM(Y ∗)L given by the image under Ancona’s functor of the tensor prod-

uct of the TSymk power and TSymk′ power of the standard representation of each

copy of GL2.

Explicitly, using the above decomposition, TSym[k,k′]HL(A ) is

TSymk(HL(A )(1))⊗TSymk′(HL(A )(2))

One can similarly define Sym(k,k′)HL(A ) and we have that its dual is

TSym[k,k′]HL(A ).

The Shimura variety for the larger group G is not of PEL type, so we cannot

directly apply Ancona’s functor. However, from the relative Chow motives defined

above, one constructs motivic sheaves for Hilbert modular surfaces with respect to

G. The étale cohomology of the étale realisation of these sheaves will be the natural

place where the Galois representations we are interested in will show up. Let us

start by considering integers k,k′, t, t ′ such that k,k′ ≥ 0 and k+2t = k′+2t ′. Write

λ for the quadruple (k,k′, t, t ′). Fix an open compact subgroup U ⊂ G(A f ) and

consider YG(U) and YG∗(U ∩G∗(A f )). One considers, with notation as above, the

sheaf H̃
[λ ]

L over YG∗(U ∩G∗(A f )) defined by

[
TSymk

(
HL(A )(1)

)
⊗det

(
HL(A )(1)

)t
]
⊗
[

TSymk′
(
HL(A )(2)

)
⊗det

(
HL(A )(2)

)t ′
]
.

(2.3.4)
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Let, as in 2.2.2.3,

G = G(Q)+G∗(A f ).

One defines a relative Chow motive H
[λ ]

L over YG(U), using the map YG∗(U ∩

G∗(A f ))→ YG(U), whose fibres are given (see [LLZ18, Proposition 2.2.5]) by the

orbits of the finite group

∆(U) =
G ∩U

(U ∩G∗(A f )) · (Z(G )∩U)

In particular one can write YG(U) as disjoint union over a finite set of el-

ements g ∈ G(A f ), whose determinant are representatives of the finite set

A×F, f /(F
×)+A×f det(U), of the following varieties

YG∗(gUg−1∩G∗(A f ))/∆(gUg−1) = Im(YG∗(gUg−1∩G∗(A f ))
qg−→ YG(gUg−1)).

The authors construct in [LLZ18, § 3.2c] a relative Chow motive on each of these

components considering the pushforward of (2.3.4) under the projection map qg;

they then take its the image under a projector with respect to the action of ∆(gUg−1)

(see [LLZ18, Proposition 3.2.8, Definition 3.2.9]. One then gets a relative Chow

motive H
[λ ]

L over YG(U), independent (up to a canonical isomorphism) of the

choice of the representatives defining the components of YG(U).

Remark 2.3.7. One has similarly the dual sheaf H
(λ )

L over YG. The `-adic

étale realisation of H
(λ )

L is the lisse Q̄`-sheaf associated to the representation of

GLHom(F,R)
2 given by

(
Symk(Std∨)⊗dett(Std∨)

)
⊗
(

Symk′(Std∨)⊗dett
′
(Std∨)

)
,

where Std∨ is the dual of the standard two-dimensional representation of GL2. This

is the sheaf Lξ ,` considered in [Nek07, §5.5].
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2.3.2.3 Infinite level sheaves

The sheaves constructed above on finite level modular curves and Shimura vari-

eties for G∗ and G give rise to a H(A f )-equivariant (respectively G -equivariant and

G(A f )-equivariant) relative Chow motive over the infinite level varieties YH ,YG∗,YG,

in the sense of [LSZ20a, § 6.2].

More precisely, recall that we showed in 2.2.2.3 that the abelian varieties

A /YG∗(U∗) for varying U∗ ⊂ G∗(AF) have natural G -equivariant structure up to

isogenies. It induces a G -equivariant structure on the relative Chow motive HL(A )

via pullback and hence also on TSym[k,k′]HL(A ). In other words, the functor of

Theorem 2.3.3, gives rise to a functor

FG∗ : RepQ(G
∗)→ CHM(YG∗)

G ,

where the target is the category of G -equivariant relative Chow motives on the pro-

variety YG∗ .

The case of modular curves is completely analogous, since H(A f ) acts by

isogenies as in 2.2.2.3 on the universal elliptic curve E /YH(U) for varying U ⊂

H(A f ). So we obtain a functor

FH : RepQ(H)→ CHM(YH)
H(A f ).

Finally, the action of G(A f ) on the relative Chow motive H
[λ ]

L comes from

the construction given above and the G -action defined in 2.2.2.3. Indeed if we take

g ∈ G(A f ), a sufficiently small subgroup U and consider the natural map

YG(U)→ YG(gUg−1),

the relative Chow motives constructed on those surfaces are built from relative

Chow motives over varieties of the form YG∗(giUg−1
i ∩G∗) and YG∗(gigUg−1g−1

i ∩

G∗) respectively, where the finite set of gi can be chosen to be the same (since

det(U) = det(gUg−1)). Since whenever the determinant of two matrices is in the
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same class in the finite quotient A×F, f /(F
×)+A×f det(U) we can assume they differ

by an element in G , for every i we can construct maps

YG∗(giUg−1
i ∩G∗)→ YG∗(g jgUg−1g−1

j ∩G∗)

for some j, which are given by multiplication by an element in G and hence induce

a map between the corresponding relative Chow motives as in 2.2.2.3.

From now on, we will write TSymk HL(E ),TSym[k,k′]HL(A ),H
[λ ]

L to denote

by abuse of notation both the finite level Chow motives and the infinite level ones.

No confusion will arise, since it will be clear from the context which is the object

we are working with. Moreover, when we write motivic cohomology of the pro-

varieties YH ,YG∗,YG with coefficients in infinite level relative Chow motives, we

mean the limit of the cohomology group of the finite level Shimura varieties with

coefficients in the corresponding finite level Chow motives.

Finally, we remark that the Hecke operators we define later (as double cosets in

§ 3.2 or as locally constant compactly supported functions on the adelic points of the

group in Chapter 4) act naturally on the universal abelian varieties we considered

(similarly as in 2.2.2.3, see also [LLZ18, Remark 2.6.1]) and hence on the relative

Chow motives we constructed. In particular they act on the motivic cohomology

groups with coefficients in such relative Chow motives.

2.3.2.4 Clebsch–Gordan map

Write Y =YH(U∗∩GL2) and Y ∗ =YG∗(U∗) for U∗ a sufficiently small subgroup of

G∗(A f ). Write E ,A for the elliptic curve over Y and the abelian surface over Y ∗

respectively. We have a closed embedding

ι : Y ↪→ Y ∗.

One has that the abelian variety ι∗(A ) is canonically isomorphic to OF⊗ZE , com-

patibly with the OF action. In particular both ι∗(HL(A )(1)) and ι∗(HL(A )(2)) can



2.3. Motivic cohomology 59

be identified with HL(E ). Hence we obtain two maps

TSymk+k′HL(E )→ TSymk HL(E )⊗TSymk′HL(E ) = ι
∗
(

TSym[k,k′]HL(A )
)
,

L(1) =
2∧
L

HL(E )→HL(E )⊗HL(E ) = ι
∗
(

TSym[1,1]HL(A )
)
.

Combining these two maps using multiplication in the symmetric tensor algebra,

we find

Proposition 2.3.8. ([LLZ18, Proposition 3.3.1]). For any integers k,k′, j satisfying

0≤ j ≤min(k,k′), we have a morphism

CG[k,k′, j]
mot : TSymk+k′−2 j HL(E )→ ι

∗(TSym[k,k′]HL(A ))(− j).

This is analogous to the map defined in [KLZ15] (see Corollary 5.2.2) for the

GL2×GL2 case. It is an instance of the maps produced using Theorem 2.3.4.

Moreover, consider YG(U) for U ⊂G(A f ) such that U∩G∗(A f ) =U∗, one can

use the fact that by construction the pullback to Y ∗ of the sheaf H
[λ ]

L over YG(U) is

TSym[k,k′]HL(A )(t + t ′) to find

CG[k,k′, j]
mot : TSymk+k′−2 j HL(E )→ ι

∗
G(H

[λ ]
L (− j− t− t ′)), (2.3.5)

where ιG denotes the natural embedding Y ↪→ YG(U).

2.3.3 Chow groups

In this section, we briefly mention the relation between motivic cohomology with

trivial coefficients and Chow groups. Bloch defined the higher Chow groups

CHi(X , j) in [Blo86]. Without going into the definition, we cite the theorem which

shows the relationship with motivic cohomology.

Theorem 2.3.9. For any X smooth variety over a field k ⊂ C and p,q≥ 0, there is

a natural isomorphism

H p
mot(X ,Q(q))∼= CHq(X ,2q− p)⊗Q.
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Proof. See [Voe02, Corollary 2].

Example 2.3.10. The theorem implies for example that

H1
mot(X ,Q(1))∼= CH1(X ,1)⊗Q= O(X)×⊗Q.

where for the last identification we refer to [MVW06, Corollary 4.2]. In particular,

if X is the modular curve Y (N), the Siegel units of Definition 2.1.11 define elements

in H1
mot(Y (N),Q(1)). There is a generalisation to non-trivial coefficients, namely

there are elements called Eisenstein classes, which will be recalled in § 4.6, defined

in H1
mot(Y (N),TSymk HQ(E )(1)).

Using Quillen K-theory and the Gersten complex (see [Qui73]), one gets the

following useful theorem. For more details see [LLZ14, Corollary 2.5.7, Proposi-

tion 2.5.8].

Theorem 2.3.11. If X is a smooth variety of finite type over a field k, then

CH2(X ,1) ∼= Z2(X ,1)/T , where Z2(X ,1) is the kernel of a boundary map in the

named Gersten complex and T is some subgroup. More explicitly

Z2(X ,1)=

{
∑

i
(Ci,φi) : Ci subvariety of codimension 1,φi ∈ k(Ci)

× s.t. ∑
i

div(φi) = 0

}
.

Remark 2.3.12. We stated the previous theorem very vaguely, avoiding precise

definitions. We justify this saying that we will only have to deal with Z2(X ,1) and,

moreover, this is where the Euler systems classes of [LLZ14, LLZ18] are defined.

The compatibilities properties already hold in that group, with no need to get to the

quotient.

2.4 Hilbert modular forms and the Asai L-function
In this section, we recall the simplest definition of Hilbert modular forms and dis-

cuss some Galois representations and L-functions attached to them.
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2.4.1 Hilbert modular forms

With the same notation as in the previous sections, we now want to define Hilbert

modular forms for F . We first of all fix δ−1 a totally positive generator of the

fractional ideal d−1, which is principal in the case of quadratic fields. We will

consider subgroups Γ ⊂ GL2(OF) of the form U(1,N)∩G(Q)+. Moreover for

λ ∈ F and r = (r1,r2) ∈ Z2, we will write λ r = λ
r1
1 λ

r2
2 and extend this to HF .

Definition 2.4.1. A Hilbert modular form of level N and weight r = (r1,r2) ∈ Z2,

with r1 +2t1 = r2 +2t2 is a function f : HF ×G(A f )→ C such that

(i) for every g ∈ G(A f ), f (g,−) is holomorphic on HF = H ×H ;

(ii) for every u ∈U(1,N),g ∈ G(A f ),τ ∈HF , f (gu,τ) = f (g,τ);

(iii) for every γ−1 =
(

a b

c d

)
∈ G(Q)+ and for every τ = (τ,τ ′) ∈HF , f (γg,τ) =

f (g,τ)|(r,t)γ
−1, where

f (g,τ)|(r,t)γ
−1 = (detγ)tNormF/Q(detγ)−1(cτ +d)−r f (g,γ−1

τ)

Remark 2.4.2 (Fourier expansion). If f is a Hilbert cusp form, then it has a Fourier-

Whittaker expansion of the form

f
((

x 0

0 1

)
,τ
)
=‖ x ‖AF, f ∑

α∈F×,+
α
−tc(αx, f )e2πi(α1τ+α2τ ′),

where c(−, f ) is a locally constant C-valued function on A×F, f and c(x, f ) depends

only on the fractional ideal generated by x and is zero unless it is contained in δ−1.

2.4.1.1 Hecke operators and Hilbert eigenforms

On the space of Hilbert modular forms of level U(1,N) one has Hecke operators

T (n) for every integral ideal of OF coprime with N. The definition is analogous to

the one for classical modular forms. In the next chapters we will give the definitions

of Hecke operators: one can see them as double cosets as in § 3.2 or as locally

constant compactly supported functions on G(A f ) as in Chapter 4. We then can

give the following definition.
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Definition 2.4.3. A cuspidal Hilbert modular form is an eigenform if it is an eigen-

vector for every Hecke operator T (n). We say that it is normalised if c(δ−1, f ) =

δ−(t1+t2)/2.

One has that, applying [Shi78, 2.20 et seq.], the Hecke operators map the set of

Hilbert modular forms with algebraic Fourier coefficients to itself and this implies

that the eigenvalues are algebraic numbers. For more details see [Shi78, Proposition

2.2].

Remark 2.4.4 (Automorphic representations). It is a standard result (explained

for example in [Kud03] and [vdG88, I.7]) that there exists a correspondence be-

tween holomorphic Hilbert modular forms and the associated automorphic func-

tions, which are slowly decreasing functions on the quotient G(Q)\G(A) satisfying

certain conditions. The space of such (cuspidal) functions decomposes as direct

sum of irreducible admissible (g,K∞)×G(A f ) modules, where g is the Lie algebra

of G and K∞ is the maximal compact subgroup. Such modules are the irreducible

cuspidal automorphic representations of G. They can be written as

π = π∞⊗ (⊗′π`).

Fixing the (g,K∞)-module π∞ to be a discrete series of weight (k,k′), these rep-

resentations appear in the middle degree parabolic étale cohomology of YG with

coefficients in the étale realisation of the sheaves defined above (see Remark 2.3.7,

Theorem 4.8.6). One associates to each of these representations π a Hilbert mod-

ular eigenform of weight (k,k′). The action of the Hecke algebra on the G(A f )-

representation, as described in Chapter 4, corresponds to the action of Hecke op-

erators on the eigenform. Moreover, for almost every `, the G(Q`)-representation

π` is spherical (see § 4.2.4) and we study such representations in more details in

§4.3-§4.4.

2.4.2 Asai L-function

As in the case of classical modular forms, one can attach to a Hilbert eigenform f of

level N, nebentype ε and weight (k+2,k′+2), with k,k′ ≥ 0, a Galois representa-
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tion. More precisely, let L be the number field generated by the Hecke eigenvalues

λm of f with respect to T (m). Let w an integer such that w≡ k ≡ k′ mod 2.

Theorem 2.4.5 (Blasius, Rogawski, Taylor). For every finite place v of L, one has

a Galois representation

ρ f ,v : Gal(F̄/F)→ GL2(Lv)

such that for all primes p - NNmL/Q(v), the representation ρ f ,v is unramified at p

and

det
(
1−Xρ f ,v

(
Frob−1

p

))
= 1−λpX +NmF/Q(p)

w−1
ε(p)X2.

One can then consider the classical L-function attached to f , i.e. the one at-

tached to the system of Galois representations (ρ f ,v)v. In [FLHS15], it is proved that

all elliptic curves over real quadratic fields are modular and hence the L-function of

one of those elliptic curve is equal to the L-function of f for some Hilbert eigenform

f of parallel weight 2.

The motivic Asai–Flach classes we work with are not related to this represen-

tation, but rather to a representation of GQ obtained from ρ f ,v. This representation

appears in the parabolic étale cohomology of the Hilbert modular variety YG, as we

will recall in § 4.8.2 (see Theorem 4.8.6).

Definition 2.4.6. Writing as before k + 2t = k′+ 2t ′ one defines the Asai Galois

representation attached to f by

ρ
As

f ,v :=
(⊗

− Ind
)Q

F
(ρ f ,v)⊗Lv(t + t ′) : Gal(Q̄/Q)→ GL4(Lv),

where
⊗
− Ind denotes the tensor induction3. It is called the Asai Galois represen-

tation attached to f because it was first considered by Asai in [Asa77].

Remark 2.4.7. The tensor induction of a representation W from a subgroup H < G

of index n to G is given considering W⊗n with the action of HnoSn on it and view-

ing G inside Hno Sn via the Frobenius embedding. Fixing cosets representatives
3See for example [Pac05, Definition 1.1].
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{Hg1, . . . ,Hgn} we call π the permutation representation of G on them, obtained

by right multiplication. For every x ∈G, there is then a unique h(i,x) ∈H such that

gi · x = h(i,x) ·gi·π(x). The Frobenius embedding is given by

x 7→ ((h(1,x), . . . ,h(n,x)),π(x)).

In our situation H = GF , G = GQ and n = 2. In the degenerate case where we re-

place F byQ⊕Qwe have G=H and can think about the set of coset representatives

as {H ·1,H ·1}. Hence h(1,x) = h(2,x) = x and π(x) = id for every x ∈ G, hence

the tensor induction of a representation W is simply given by the representation

W ⊗W . So if we start with a classical eigenform f and view ρAs
f ,v as degenerate

case as above, we obtain the Rankin-Selberg convolution ρ f ,v⊗ρ f ,v.

One can then consider the corresponding L-function, called Asai L-function

and denoted by LAs( f ,s). It is defined as a product of local Euler factors as follows.

Definition 2.4.8. For f as above, we define the local Euler factor for ` 6= p to be

PAs
` ( f ,X) := det(1−X Frob−1

` |(V
As
f )I`),

where Frob` is the arithmetic Frobenius at ` and I` is the inertia subgroup at `.

The local Euler factor at p is defined by the same polynomial acting on the Galois

representation ρAs
f ,w for some auxiliary w such that p - w.

Then the Asai L-function is defined by

LAs( f ,s) := ∏
`

PAs
` ( f , `−s)

This product converges for Re(s)> k+k′
2 and it admits an analytic continuation

to the whole complex plane. It also satisfies a functional equation relating the value

at s with the value at k+ k′−1− s. The Euler factors at good primes are explicitly

characterised as follows

Proposition 2.4.9. ([Asa77, Theorem 2], [LLZ18, Proposition 4.3.4]) If f is of level
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N and ` - Nm(N)p then the polynomial PAs
` ( f , `t+t ′X) is equal to

(1−α1α2X)(1−α1β2X)(1−β1α2X)(1−β1β2X), if `= l1 · l2 splits in F

(1−αX)(1−βX)(1−αβX2) if ` is inert in F .

where αi,βi and α,β are the roots of X2−ali( f )X+`w−1ε(li) and of X2−a`( f )X+

`2(w−1)ε(`) respectively, where w = k+2+2t = k′+2+2t ′.

Remark 2.4.10. In §4.3-§4.4, the polynomials of the previous proposition will

be studied and described in terms of local zeta integrals associated to the G(Q`)-

representations π` of Remark 2.4.4.



Chapter 3

Asai–Flach classes tame norm

relations by means of Hecke algebra

congruences

In this chapter we define Asai–Flach classes, following [LLZ18], as elements in the

motivic cohomology of the Hilbert modular surface. We give the definition only in

the case of trivial coefficients, namely working with classes defined as pushforward

of Siegel units in some higher Chow group of the Hilbert modular surface. We also

prove that these classes satisfy tame norm relations at primes which split in F and

are narrowly principal. The method is the one used in [LLZ18, Section 7], where

it is used to prove tame norm relations for inert primes and is only sketched for the

above mentioned primes. We give the details of such method in this case. It relies

on very explicit computations in the Hecke algebra acting on the cohomology of the

Hilbert modular surface.

3.1 Definition of Asai–Flach classes (trivial coeffi-

cients case)
Recall that F is a real quadratic field of discriminant D, OF its ring of integers, d its

different. Recall that the embedding GL2 ⊂ G∗ defines a closed immersion

ι : Y1(N) ↪→ Y ∗1 (N),
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for N integral ideal of F such that N∩Z = (N). We finally define Asai–Flach

classes for Y ∗1 (N). We have the pushforward map defined in (2.3.3),

ι∗ : H1
mot(Y1(N),Q(1)) =O(Y1(N))×⊗Q−→ H3

mot(Y
∗
1 (N),Q(2)) = CH2(Y ∗1 (N),1)⊗Q

g 7−→ (ι(Y1(N)), ι∗(g)),

where we applied Theorem 2.3.9 and used the identifications given in Example

2.3.10 for the modular curve Y1(N) and Theorem 2.3.11 for the surface Y ∗1 (N).

Definition 3.1.1 (Asai–Flach classes for M = 1). We define the Asai–Flach class

AF1,N to be the image of the Siegel unit g0,1/N under ι∗, i.e.

AF1,N = (ι(Y1(N)), ι∗(g0,1/N)) ∈ CH2(Y ∗(N),1).

Remark 3.1.2 (Beilinson–Flach classes). As we already said many times,

Beilinson–Flach classes (for M = 1) are obtained precisely in the same way, but

using the closed embedding

∆ : Y1(N)→ Y1(N)2,

and getting an element in CH2(Y1(N)2,1)⊗Q.

One then defines more general Asai–Flach classes on the base extension of

Y ∗1 (N), which is a smooth surface overQ, to cyclotomic fields, using Remark 2.1.6.

Consider M ≥ 1 integer. Via pullback under the natural map

h : Y ∗(M,MN)→ Y ∗1 (MN)

coming from the inclusion U∗(M,MN) ⊂U∗(1,MN), one can see the Asai–Flach

class AF1,MN as an element in CH2(Y ∗(M,MN),1)⊗Q. Recall from definition

2.2.8 that for a ∈OF we have an endomorphism ua of Y ∗(M,MN) and from defini-

tion 2.2.19 a map tM : Y ∗(M,MN)→ Y ∗1 (N)×µM, where, for the ease of notation,

we denote by µm the group scheme of primitive m-th roots of unity.
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Definition 3.1.3 (translated Asai–Flach classes). Let M be an integer such that N is

divisible by M. Let a ∈ OF/(MOF +Z), we then define

ÃFM,N,a := (ua)∗AF1,MN ∈ CH2(Y ∗(M,N),1).

Definition 3.1.4 (Asai–Flach classes for M > 1). We define the Asai–Flach class

AFM,N,a to be the image of AF1,MN ∈ CH2(Y ∗(M,MN),1)⊗Q under (tM ◦ua)∗,

i.e.

AFM,N,a = (tM)∗(ÃFM,N,a) = (tM ◦ua)∗(AF1,MN) ∈ CH2(Y ∗1 (N)×µM,1)⊗Q.

If a = 0, we will simply write AFM,N for AFM,N,0.

Lemma 3.1.5. Consider the map ιM,N,a given by the composition

ιM,N,a :Y1(M2N)×µM
f−→Y (M,MN)

ι ′−→Y ∗(M,MN)
ua−→Y ∗(M,MN)

tM−→Y ∗1 (N)×µM,

where f is defined in (2.1.1). We then have AFM,N,a = (ιM,N,a)∗(g0,1/M2N).

Proof. Recall that the map f is the one obtained by the map Y (M2N)→Y (M,MN)

sending (E,e1,e2) 7→ (E/〈Me2〉, [MNe1], [e2]), which factors through the quotient,

and hence defines a morphism

f : Y1(M2N)×µM→ Y (M,MN).

Since the following diagram commutes

Y (M,MN) Y1(MN)

Y ∗(M,MN) Y ∗1 (MN),

ι ′ ι

where the horizontal arrow are the natural projection maps, the result follows from

the definition of AF1,MN and the equality g0,1/MN = f∗g0,1/M2N , proved in Lemma

2.1.17.
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Remark 3.1.6. Notice that, using Remark 2.2.20, the description of f and ua, we

get that the map ιM,N,a is given on complex points by

τ 7→Mτ 7→ (Mτ,Mτ) 7→ (Mτ +a1,Mτ +a2) 7→
(

τ +
a1

M
,τ +

a2

M

)
.

Remark 3.1.7. Thanks to the previous lemma, we can also show that the ele-

ment AFM,N,a depends only on the class of a in OF/(MOF +Z). We want to

show that AFM,N,a is equal to (the pullback via Y ∗1 (N)× µM → Y ∗1 (N) of) AF1,N

if a ∈MOF +Z. Indeed if a ∈MOF , we have that
(

1 a

0 1

)
∈U∗(M,MN) and hence

ua = u0 = idY ∗(M,MN). Moreover if a ∈ Z, then we can consider the automorphism

ua : Y (M,MN)→ Y (M,MN) given by the action of the matrix
(

1 a

0 1

)
and get the

following commutative diagram

Y (M,MN) Y (M,MN)

Y ∗(M,MN) Y ∗(M,MN).

ua

ι ′ ι ′

ua

We know that (ua)∗ = (u−a)
∗ and that (u−a)

∗(g0,1/MN) = g0,1/MN , thanks to Propo-

sition 2.1.14 (i). Hence we find that, if a ∈ Z,

(ιM,N,a)∗(g0,1/M2N) = (tM)∗(ι
′)∗((ua)∗(g0,1/MN)) = (ιM,N,0)∗(g0,1/M2N).

Hence we want to show that (ιM,N,0)∗(g0,1/M2N) = AF1,N, denoting by AF1,N, by

abuse of notation, the pullback of AF1,N from Y ∗1 (N) to Y ∗1 (N)×µM. We can write

ιM,n,0 = (ι× id)◦ tM ◦ f , where ι : Y1(N) ↪→ Y ∗1 (N). Now, the composition tM ◦ f is

equal to the projection π : Y1(M2N)× µm→ Y1(N)× µm. Viewing both the target

and the source as quotients of Y (M2N) as in Proposition 2.1.5, we find the explicit

description of the pushforward via π , i.e.

π∗(g0,1/M2N)= ∏
0≤i, j≤M2−1

(
1 0

iN 1+ jN

)∗
(g0,1/M2N)= ∏

0≤i, j≤M2−1

gi/M2,1/M2N+ j/M2 = g0,1/N ,

where in the second equality we used Proposition 2.1.14 (i) and in the last one
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Lemma 2.1.15, for m = M2. Moreover g0,1/N denotes the pullback of g0,1/N from

Y1(N) to Y1(N)×µM. Therefore we proved the desired equality.

We conclude this section proving a useful property of the Asai–Flach classes.

Proposition 3.1.8. For b ∈ (Z/MZ)×, denote by σb the automorphism of µM given

by ζ 7→ ζ b. We then have

(
b 0

0 1

)∗
ÃFM,N,a = ÃFM,N,b−1a and σb ·AFM,N,a = AFM,N,b−1a .

Proof. We will prove only the second equality, the first one follows similarly, thanks

to Proposition 2.2.21. Using the description given in the previous lemma, we

need to check that (i) σ∗b (ιM,N,a)∗(g0,1/M2N) = (ιM,N,b−1a)∗(g0,1/M2N) and that (ii)

σ
−1
b (ιM,N,a)(Y ) = (ιM,N,b−1a)(Y ), where we wrote Y =Y1(M2N)×µM. First of all,

using the properties of the pushforward and the fact that σb is an automorphism

with inverse σb−1 , we get that σ∗b = (σb−1)∗. Using Proposition 2.2.21 and Propo-

sition 2.1.14 (i) (together with the computation (0,1/M2N)
(

b−1 0

0 1

)
= (0,1/M2N))

one gets

σ
∗
b (tM)∗(ua ◦ ι ◦ f )∗(g0,1/M2N) = tM

(
b−1 0

0 1

)
∗

(
1 a

0 1

)
∗
(ι ◦ f )∗(g0,1/M2N)

= tM

(
b−1 0

0 1

)
∗

(
1 a

0 1

)
∗

(
b−1 0

0 1

)∗
(ι ◦ f )∗(g0,1/M2N)

= tM ◦ub−1a ◦ ι ◦ f (g0,1/M2N) = AFM,N,b−1a,

where in the third equality we used the relation

(
b 0

0 1

)−1(
1 a

0 1

)
=
(

1 b−1a

0 1

)(
b 0

0 1

)−1
. (3.1.1)

To prove (ii) we proceed similarly. We have that the elements in (ua ◦ ι ◦ f )(Y ) are
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in the form
(

1 a

0 1

)
· (u,u), for u ∈ f (Y ). Hence, using again (3.1.1), we can write

σ
−1
b (ιM,N,a)(Y ) = tM

((
b−1 0

0 1

)(
1 a

0 1

)
{(u,u) : u ∈ f (Y )}

)
= tM

((
1 b−1a

0 1

)(
b−1 0

0 1

)
{(u,u) : u ∈ f (Y )}

)
= tM

((
1 b−1a

0 1

)
{(u,u) : u ∈ f (Y )}

)
= (tM ◦ub−1a ◦ ι ◦ f )(Y ),

where in the last equality we used the fact that the image of {(u,u) : u ∈ f (Y )} via(
b−1 0

0 1

)
is again {(u,u) : u∈ f (Y )}: indeed, clearly the matrix sends the image of the

diagonal embedding to itself; one gets the other inclusion using the inverse matrix.

Hence we get (ii).

3.2 Hecke operators as double cosets

We let G denote the subgroup G(Q)+G∗
(
A f
)
⊆ G

(
A f
)

as in 2.2.2.3. Then there

are bijections Y ∗ (U∗) = G(Q)+\ [G ×HF ]/U∗ for each U∗, and we obtain maps

of Q-varieties for any g ∈ G

Y ∗ (U∗)→ Y ∗
(
gU∗g−1) .

We define the Hecke algebra on Y ∗(U∗) as the Z-algebra generated by double

cosets U∗gU∗, for all elements g ∈ G . One recovers the action given by one such

operator on the cohomology of the corresponding Hilbert modular surface as fol-

lows. Let H,K ⊂ G∗(A f ) level subgroups and consider the double coset HgK. It

defines the following maps

Y ∗(g−1Hg∩K) Y ∗(H ∩gKg−1)

Y (K) Y ∗(H)

·g

p1 p2

We choose to look at the operator HgK acting on cohomology via (p2)∗ ◦ (g)∗ ◦ p∗1.
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We can rewrite the double coset as disjoint union of right cosets

HgK =
⊔

i

H ·gαi,

where the αi’s are coset representatives of the quotient (g−1Hg∩K)\K. In the case

where H = K = U∗(M,N) where M | N we recall the definition of the standard

Hecke operators

• The diamond operators: for x ∈ (OF/N)×, consider any lift of x in ÔF
×

and

let 〈x〉 be the double coset of
(

x 0

0 x−1

)
1;

• The Frobenius maps: for x ∈ (Z/Z∩M)×, consider any lift of x in Ẑ× and

let σx be the double coset of
(

x−1 0

0 1

)
;

• The operator R′(x): for x ∈ F×, we write R′(x) for the double coset of the

scalar matrix
(

x−1 0

0 x−1

)
.

• The operators T ′(x),U ′(x): for x ∈ OF which is totally positive and square-

free, we define T ′(x),U ′(x) as the double coset of
(

x−1 0

0 1

)
in the case where x

is coprime to N, respectively divides N.

We denote by T (x),U(x),R(x) the operators given by the same double cosets

of T ′(x),U ′(x),R′(x), but acting on cohomology via (p1)∗ ◦ (g)∗ ◦ p∗2.

Remark 3.2.1. These Hecke operators act on the universal abelian variety over the

Hilbert modular surface as explained in [LLZ18, Remark 2.6.1], using the con-

struction given in 2.2.2.3. In particular the operator R′(x) acts as pushforward of the

multiplication by x.

Finally, if a ∈ OF , we can consider the inclusion H ′ = U∗(M,Na) ⊂ H =

U∗(M,N). It induces a canonical projection map pr1,a : Y ∗(M,Na)→ Y ∗(M,N).

Moreover, we write pr2,a : Y ∗(M,Na)→ Y ∗(M,N) for the map induced by the

1Note that with our convention, the action on cohomology of 〈x〉 is given by the pullback of the
map induced by multiplication by

(
x−1 0

0 x

)
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multiplication by
(

a 0

0 1

)
. We can rewrite the pushforward via these maps as double

cosets as follows:

(pr1,a)∗ = H id H ′,

(pr2,a)∗ = H
(

a 0

0 1

)
H ′.

3.2.1 Some computations in the Hecke algebra

From now on we assume we are in the case where the chosen prime ` splits in F and

we can write `= λλ̄ , where λ , λ̄ are totally positive integers of F , that we identify

with the two prime ideals in OF above ` that they generate.

We now focus on the operators we are interested in. First we rename the sub-

groups consider above as follows. Consider two integral ideals M |N coprime to λ

and λ̄ , with M ∈ Z. Let

• G0 :=U∗(M,N)

• Gλ := U∗(M,Nλ ) = {γ ∈ G0 : γ ≡
(
∗ ∗

0 1

)
(mod λ )} = {

(
(av) (bv)

(cv) (dv)

)
∈ G0 :

cλ ,dλ −1 ∈ λ ·OF,λ}

• G` :=U∗(M,N`) = {γ ∈G0 : γ ≡
(
∗ ∗

0 1

)
(mod `)}= {

(
(av) (bv)

(cv) (dv)

)
∈Gλ : c

λ̄
,d

λ̄
−

1 ∈ λ̄ ·OF,λ̄}

We had to define the “intermediate” subgroup Gλ since we want to decompose

the operators we are interested in using the formula ` = λλ̄ , as we will see in a

moment. Firstly we decompose the following operators as disjoint union of right

cosets. In order to choose the coset representatives for U ′(λ ),U ′(λ̄ ),T ′(λ ),T ′(λ̄ ),

we fix isomorphisms

OF,λ/λ ·OF,λ ' Z/`Z, OF,λ̄/λ̄ ·OF,λ̄ ' Z/`Z.

We then have

(pr1,λ̄ )∗ = Gλ id G` = Gλ · id

(pr1,λ )∗ = G0 id Gλ = G0 · id
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(pr1,`)∗ = G0 id G` = (pr1,λ )∗(pr1,λ̄ )∗ = G0 · id

(pr2,λ̄ )∗ = Gλ

(
λ̄ 0

0 1

)
G` = Gλ ·

(
λ̄ 0

0 1

)
(pr2,λ )∗ = G0

(
λ 0

0 1

)
Gλ = G0 ·

(
λ 0

0 1

)
(pr2,`)∗ = G0

(
` 0

0 1

)
G` = (pr2,λ )∗(pr2,λ̄ )∗ = G0 ·

(
` 0

0 1

)

U ′(λ ) = G`

(
λ−1 0

0 1

)
G` =

`−1⊔
i=0

G` ·
(

λ−1 0

0 1

)(
1 iM

0 1

)

T ′(λ ) = G0

(
λ−1 0

0 1

)
G0 =

`−1⊔
i=0

G0 ·
(

λ−1 0

0 1

)(
1 iM

0 1

)
tG0 ·

(
λ−1 0

0 1

)
X ,

where X ∈ G0 is given as follows: if v is a prime of F not dividing λN, Xv ∈

GL2(OFv) is the identity matrix. Let N be the norm of N, fix x ∈ Z such that

x` = 1+Nk ∈ Z and ` - x. Let t = λ̄x ∈ OF . We then take the component of X at

all primes dividing λN to be
(

λ t N

N 1

)
. Note that we defined an element in G0 because

λ t−N2 is unit at places dividing λN and it is equal to 1+Nk−N2 ∈ Z.

One has a similar decomposition for U ′(λ̄ ) and T ′(λ̄ ).

Lemma 3.2.2. With the above assumptions and conventions for `,λ , λ̄ , we have the

following equality of double cosets

(pr1,`)∗U ′(`) =T ′(`)(pr1,`)∗−〈λ−1〉T ′(λ̄ )(pr2,λ )∗(pr1,λ̄ )∗

−〈λ̄−1〉T ′(λ )(pr1,λ )∗(pr2,λ̄ )∗+ 〈`
−1〉(pr2,`)∗.

Proof. We will only prove the following equality

T ′(λ )(pr1,λ )∗− (pr1,λ )∗U
′(λ ) = 〈λ−1〉(pr2,λ )∗.

The analogous equality holds replacing λ with λ̄ and the proof is exactly the same.

Combining such equalities we get the one in the statement of the lemma.
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By the above decompositions of U ′(λ ),T ′(λ ), we find

T ′(λ )(pr1,λ )∗− (pr1,λ )∗U
′(λ ) = G0 ·

(
λ−1 0

0 1

)
X .

Moreover, the action on cohomology of pushforward by pr2,λ : Y ∗(M,Nλ ) →

Y ∗(M,N) is equal to the action of the pushforward of the map induced by mul-

tiplication by
(

1 0

0 λ−1

)
. Fix t = λ̄x ∈ OF as above such that t is not divisible by λ

and let y ∈ ÔF defined by yv = λ−1 for all places v - λN and yv = t for all places

dividing λN. Note that y−1 is a lift of λ ∈ (OF/NOF)
× in Ô×F . We hence find

〈λ−1〉(pr2,λ )∗ = G0 ·
(

1 0

0 λ−1

)(
y 0

0 y−1

)
.

Let Y =
(

1 0

0 λ−1

)(
y 0

0 y−1

)
∈ G(A f ), W =

(
λ−1 0

0 1

)
X ∈ G(A f ). We now verify that

WY−1 ∈ G∗(A f ) and that furthermore it is an element of G0 = U∗(M,N). Hence

G0 ·Y = G0 ·W and this will conclude the proof of the claimed equality. At places

v not dividing λN, we have

WvY−1
v =

(
λ−1 0

0 1

)(
y−1

v 0

0 λyv

)
= id.

At places v | λN, we find

WvY−1
v =

(
t λ−1N

N 1

)(
t−1 0

0 λ t

)
=
(

1 tN

t−1N λ t

)
.

Since λ t ≡ 1 mod N and the determinant is a unit both in the ring of integers of Fλ

and of Fv for v |N, we have proved WY−1 ∈ G0.

3.2.2 The Asai Euler factor

We now define the Asai Euler factor as a polynomial with coefficients in the Hecke

algebra of level U∗(M,N), with the assumption M | N. The reason of the term

“Asai Euler factor” is explained by the fact that its action on a Hilbert modular

eigenform gives the local factor at ` of the Asai L-function attached to it, as in

2.4.8.
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Definition 3.2.3. The Asai Euler factor P̀ (X) at a rational prime ` -N unramified

in F is defined as follows:

i) If ` is inert, we let

P̀ (X) = (1−T (`)X + `2〈`〉R(`)X2)(1− `2〈`〉R(`)X2).

ii) If ` is split, we let

P̀ (X) =1−T (`)X +
(
T (`)2−T (`2)− `2〈`〉R(`)

)
X2−

− `2〈`〉R(`)T (`)X3 + `4〈`2〉R(`)2X4

We define similarly the Asai Euler factor P′` for the corresponding polynomial with

〈x〉,T (x),R(x) replaced with 〈x−1〉,T ′(x),R′(x) respectively.

Remark 3.2.4. In the case where ` splits and the primes above it are narrowly

principal, so that we can write `= λλ̄ , with λ ∈O+
F , the coefficient of X2 in P̀ (X)

can be rewritten as

`〈λ 〉R(λ )T (λ̄ )2 + `〈λ̄ 〉R(λ̄ )T (λ )2−2`2〈`〉R(`),

and similarly for P′`(X).

3.3 Tame norm relations for split primes (narrowly

principal)
We give the details of the proof of tame norm relations, following the strategy

sketched in [LLZ18], in the cases where ` splits in F and the two primes above

it are narrowly principal.

We will state the compatibility relation under suitable projection maps for

the translated Asai–Flach classes ÃFM,N,a and obtain the norm compatibility rela-

tions for AFM,N,a, since the chosen projections at the level Y ∗(M,N) will translate

in norm maps at the level of the surfaces Y ∗(N)× µM (see the observation after
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[LLZ18, Theorem 7.1.2a]). More precisely, we consider the following morphisms:

for any m ∈ Z≥1, we denote by p̂r2,m the degeneracy map given by the action of the

matrix
(

m−1 0

0 1

)
p̂r2,m : Y ∗(Mm,N)→ Y ∗(M,N);

we also consider the canonical projection pr1,` coming from the inclusion

U∗(M, `N)⊂U∗(M,N)

pr1,` : Y ∗(M, `N)→ Y ∗(M,N).

We will prove the following result.

Theorem 3.3.1 (Cyclotomic compatibility for ÃF, tame case). Let M ≥ 1, N an

integral ideal of F divisible by M and ` a rational prime which does not divide

Nm(N). Let a ∈ OF/(`MOF +Z) such that it is a unit at ` and suppose that `

is split in F and the primes l, l̄ above it are narrowly principal. Then the push-

forward via the composition pr1,` ◦ p̂r2,` : Y ∗(`M, `N)→ Y ∗(M, `N)→ Y ∗(M,N)

maps ÃF`M,`N,a to

σ`[(`−1)(1−〈`−1〉σ−2
` )− `P′(`−1

σ
−1
` )] · ÃFM,N,a.

Corollary 3.3.2. Let M ≥ 1, N an integral ideal of F and ` a rational prime which

does not divide Nm(N)M. Let a ∈ OF/(`MOF +Z) such that it is a unit at `

and suppose that ` satisfies the splitting assumption as above. Then the norm map

Y ∗(N)×µM`→ Y ∗(N)×µM sends the class AFM`,N,a to

σ`[(`−1)(1−〈`−1〉σ−2
` )− `P′(`−1

σ
−1
` )] ·AFM,N,a .

Proof. The result follows directly from the theorem applied to the classes

ÃF`M,`MN,a, ÃFM,MN,a, noticing that the pushforward map (tM)∗ used in Definition

3.1.4 commutes with the Hecke operators.
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3.3.1 Euler system norm relations

Before getting into the proof of the theorem, we briefly explain how to deduce the

Euler system norm relations in Galois cohomology using such result.

Consider a Hilbert modular eigenform f , we can construct classes in Galois

cohomology taking a “projection” to H1
(
Q,(V As

f )∗
)

. The construction for motivic

coefficient sheaves is very similar and is presented in § 4.8.2.

• We have (see [Hub00]) a realisation functor for continuous étale cohomology

(as defined in [Jan88]) for smooth varieties Y defined over Q

rét : H3
mot(Y,Q(2))−→ H3

ét(Y,Qp(2)).

• There is an Hochschild–Serre spectral sequence (see again [Jan88]) relating

continuous étale cohomology for varieties Y over Q with étale cohomology

of the base change over Q̄

E p,q
2 = H p(Q,Hq

ét(Y,Lv(n))⇒ H p+q
ét (YQ̄,Lv(n)),

for any finite extension Lv/Qp. From this, one gets a map from the kernel

of the map H i
ét(Y,Lv(n))→ H i

ét(YQ̄,Lv(n))GQ to H1 (Q,H i−1
ét (YQ̄,Lv(n))

)
. In

particular, for i = 3 and if Y is a surface, since Artin vanishing theorem tells

us that H i
ét(YG(K)Q̄,Lv(n)) = 0 being i > dim(Y ) = 2, we obtain a map, for

any finite extension Lv/Qp

HS : H3
ét(Y,Lv(2))−→ H1 (Q,H2

ét(YQ̄,Lv(2))
)
.

Applying the étale regulator and the map obtained via Hochschild–Serre for

Y = Y ∗(N) to the classes AFM,N,a we obtain elements in

H1 (Q,H2
ét(Y

∗(N)×Q µM))Q̄,Lv(2))
)
.

• We also recall (see [LLZ18, Corollary 4.4.4]) that if f is an Hilbert eigenform
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of level N and weight (2,2), there is a canonical GQ-equivariant map

pr f : H2
ét(Y

∗(N)Q̄,Lv(2))→ (V As
f )∗, (3.3.1)

where v | p is a place of the number field generated by the Hecke eigenvalues

of f and V As
f is the GQ representation of Definition 2.4.6. Moreover for each

prime ` - pDisc(F/Q)NmF/Q(N), this intertwines the dual operator-valued

Asai Euler factor P′`(X) of Definition 3.2.3 on the left-hand side with the

polynomial PAs
` ( f ,X) of Definition 2.4.8 (see [LLZ18, Corollary 4.4.4]).

• Recall that, by Remark 2.1.6, for any variety X over Q we naturally have the

following isomorphism of GQ-modules

H i
ét((X×Q µN)Q̄,Lv(n))' IndGQ

GQ(µN )
H i

ét(XQ̄,Lv(n)).

Moreover, by Shapiro’s lemma we have

H1(Q, IndGQ
GQ(µN )

V ) = H1(Q(µN),V ).

Applying all the steps mentioned above we find, for every integer M ≥ 1 and f as

above, a map

πM, f : H3
mot(Y

∗(N)×µM,Q(2))⊗L→ H1(Q(µM),(V As
f )∗).

We are then finally able to produce a collection of classes in Galois cohomology.

Definition 3.3.3. Let M ≥ 1 be an integer and a ∈ OF/(MOF +Z). We define

z f
M,a := 1

M πM, f (AFM,N,a) ∈ H1(Q(µM),(V As
f )∗).

Corollary 3.3.2, combined with the properties of the map (3.3.1), implies the

following result.
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Corollary 3.3.4. If M ≥ 1 is an integer coprime to to pDisc(F/Q)NmF/Q(N) and

` is a rational prime coprime to MpDisc(F/Q)NmF/Q(N) which splits in F and

such that the primes above it are trivial in the narrow class group of F, then the

following relation holds true

coresQ(µM`)
Q(µM)

(z f
M`,a) =−σ`Q(σ−1

` )z f
M,a,

where Q(X) ∈ OL[X ] is a polynomial congruent to det(1−X Frob−1
` |(V

As
f (1))I`)

modulo (`−1).

In other words, we have proved that modulo (`−1) and multiplication by σ`,

the classes satisfy the tame norm relations at primes splitting in F and such that the

primes above them are trivial in the narrow class group. In fact, this is essentially

all one needs. Working more carefully and producing similarly integral classes,

one can then get rid of the σ` using [KLZ15, Lemma 7.3.2] and then lift the classes

“removing the (`− 1)-error term” using [KLZ15, Lemma 7.3.4], [Rub00, Lemma

IX.6.1]. All of these procedures do not modify the bottom class, i.e. one gets an

Euler system (z̃ f
M,a)M for V As

f (1) with z̃ f
1,a = z f

1,a.

3.3.2 The other compatibilities in motivic cohomology

Theorem 3.3.1 shows that the classes ÃFM,N,a in the motivic cohomology of Hilbert

modular surfaces satisfy some relation when changing the cyclotomic variable M.

For the sake of completeness and since it will be useful for the proof of such theo-

rem, we state some relations satisfied by the classes when changing the level vari-

able N.

Theorem 3.3.5. Let M ≥ 1,N an ideal divisible by M, l a prime ideal of OF and `

the rational prime lying below l.

1. Then the image of ÃFM,lN,a under pushforward along the natural projection

pr1,l : Y ∗(M, lN)→ Y ∗(M,N) is given by

 ÃFM,N,a if ` | NmF/Q(N)(
1−
〈
`−1〉σ

−2
`

)
ÃFM,N,a otherwise.
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2. The image of the class ÃFM,`N,a under pushforward along the twisted projec-

tion map pr2,` : Y ∗(M, `N)→ Y ∗(M,N) is given by

 ` · ÃFM,N,`a if ` |N

`σ−1
`

(
1−
〈
`−1〉σ

−2
`

)
· ÃFM,N,a if ` -N

Proof. This is the trivial coefficient case of [LLZ18, Theorem 7.1.1a,Corollary

7.4.2], noticing that, thanks to Remark 3.2.1, the action of the operator R′(`) is

trivial on motivic cohomology with trivial coefficients.

Moreover, one also has the wild cyclotomic compatibility (which will imply

the wild Euler system norm relations), i.e. the classes satisfy some relation also

when changing the level by a prime that divides the conductor N.

Theorem 3.3.6. Let M ≥ 1, let ` be prime, and let N be an ideal of divisible by

`M. Let a ∈ OF/(`MOF +Z) and assume a is a unit at `. Recall the map p̂r2,` :

Y ∗(`M,N)→ Y ∗(M,N). Then

(
p̂r2,`

)
∗

(
ÃF`M,N,a

)
=

 U ′(`) · ÃFM,N,a if ` |M

(U ′(`)−σ`) · ÃFM,N,a if ` -M

Proof. See [LLZ18, Theorem 7.1.2a], again in the trivial coefficient case.

3.3.3 Proof of Theorem 3.3.1

Let ` be as in Theorem 3.3.1 and write l = (λ ), l̄ = (λ̄ ) for λ , λ̄ totally positive

elements such that λλ̄ = `.

In order to prove Theorem 3.3.1 we will need the following result, which is the

translation of Theorem 7.5.1 of [LLZ18] for motivic classes and j = 0.

Theorem 3.3.7. Let a ∈ OF/(MOF +Z) and `,λ , λ̄ as above. Assume that λ̄ -

N,λ -N. Then we have

(pr2,λ )∗ÃFM,λN,a = σ
−1
` [T ′(λ̄ )−σ

−1
` 〈λ̄

−1〉T ′(λ )] · ÃFM,N,a.
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One also has the analogous equality for (pr2,λ̄ )∗ÃFM,λ̄N,a, switching the roles of λ

and λ̄ .

Proof. Let a′ ∈OF . We denote by ιa′,λ and ιa′,1 the maps obtained by the composi-

tion

ιa′,λ : Y (M,N`) ↪→ Y ∗(M,Nλ )
ua′−→ Y ∗(M,Nλ ),

ιa′,1 : Y (M,N) ↪→ Y ∗(M,N)
ua′−→ Y ∗(M,N).

The proof follows the line of [LLZ15, Lemma A.2.1]. We will divide it in

three steps. Recall the congruence subgroups U∗(M,N(λ )),U∗(M(λ ),N) and

UQ(M,N(`)),UQ(M(`),N) introduced in Definition 2.2.6. The idea, following

[Kat04], is to consider

Y (M,N`)→ Y (M,N(`))
ϕ`−→ Y (M(`),N)→ Y (M,N),

where ϕ` :Y (M,N(`))
'−→Y (M(`),N) is the isomorphism of [Kat04, § 2.8], given on

complex points by multiplication by `. We write ιa′,(λ ), ι̂a′,(λ̄ ) for the maps obtained

as follows

ιa′,(λ ) : Y (M,N(`)) ↪→ Y ∗(M,N(λ ))
ua′−→ Y ∗(M,N(λ )),

ι̂a′,(λ̄ ) : Y (M(`),N) ↪→ Y ∗(M(λ̄ ),N)
ua′−→ Y ∗(M(λ̄ ),N).

Finally, recall that, following our convention, if λ̄ -N the action of the Hecke oper-

ator T ′(λ̄ ) is given by (p̂r2,λ̄ )∗ ◦ (p̂r1,λ̄ )
∗, where p̂r1,λ̄ is the natural projection map

in the following diagram

Y ∗(M(λ̄ ),N) Y ∗(M,N(λ̄ ))

Y ∗(M,N) Y ∗(M,N)

'

p̂r1,λ̄

p̂r2,λ̄
π1,λ̄

and p̂r2,λ̄ is the composition of the horizontal isomorphism given by multiplication

by
(

λ̄−1 0

0 1

)
and the natural projection map on the right. We will denote by π2,λ̄ the
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following map

π2,λ̄ : Y ∗(M,N(λ̄ ))
·
(

λ̄ 0

0 1

)
−−−−→ Y ∗(M(λ̄ ),N)

p̂r1,λ̄−−−→ Y ∗(M,N),

where the first map is the inverse of the isomorphism above. We will use the analo-

gous notation for the prime λ .

Step 1. First of all we consider the commutative diagrams

Y (M,N`) Y ∗(M,Nλ )

Y (M,N(`)) Y ∗(M,N(λ ))

ιa,λ

pr p̃r
ιa,(λ )

Y ∗(M,Nλ ) Y ∗(M,N)

Y ∗(M,N(λ )),

pr2,λ

p̃r
π2,λ

where pr and p̃r are the natural projection maps. Hence we have (pr2,λ )∗ÃFM,λN,a =

(π2,λ )∗(ιa,(λ ))∗pr∗(Y (M,N`),g0,1/N`). Following [Kat04, Lemma 2.12 and p.132],

one can show that

pr∗g0,1/N` =

ϕ∗` (g0,1/N) if ` | N

ϕ∗` (g0,1/N) · (g0,`−1/N)
−1 if ` - N,

where we denoted by g0,`−1/N the Siegel unit g0,β , pulled back via the natural map

Y (M,N(`))→Y (M,N), where β is the unique element of 1
NZ/Z such that `β = 1

N .

Similarly, the Siegel unit g0,1/N is seen as an element of O(Y (M(`),N))× via the

pullback of Y (M(`),N)→ Y (M,N).

By our assumptions, ` -N, hence we find (pr2,λ )∗ÃFM,λN,a =

(π2,λ )∗(ιa,(λ ))∗(Y (M,N(`)),ϕ∗` (g0,1/N))− (π2,λ )∗(ιa,(λ ))∗(Y (M,N(`)),g0,`−1/N).

Step 2. We now want to compute (F) :=(π2,λ )∗(ιa,(λ ))∗(Y (M,N(`)),ϕ∗` (g0,1/N)).

We consider the map f : Y ∗(M,N(λ ))→ Y ∗(M(λ̄ ),N) induced by multiplication
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by
(

` 0

0 1

)
. We have the following commutative diagram

Y (M,N(`)) Y ∗(M,N(λ ))

Y (M(`),N) Y ∗(M(λ̄ ),N) Y ∗(M,N),

ιa,(λ )

ϕ` f
π2,λ

ι̂`a,(λ̄ ) p̂r2,λ̄

where p̂r2,λ̄ is given by the action of
(

λ̄−1 0

0 1

)
. Hence we have, combining this with

Step 1 and using the fact that ϕ` is an isomorphism,

(F) = (p̂r2,λ̄ )∗(ι̂`a,(λ̄ ))∗(Y (M(`),N),g0,1/N).

Next we consider the commutative diagram

Y (M(`),N) Y ∗(M(λ̄ ),N)

Y (M,N) Y ∗(M,N),

ι̂`a,(λ̄ )

p̂r1,λ̄

ι`a,1

where the vertical maps are the natural projections. Reasoning as in [LLZ14,

Lemma 2.4.5], one can show that (p̂r1,λ̄ )
∗ ◦ (ι`a,1)∗ is equal to the pullback under

the first vertical map composed with (ι̂`a,(λ̄ ))∗. Using this and the above equality,

we get

(F) = (p̂r2,λ̄ )∗(p̂r1,λ̄ )
∗(ι`a,1(Y (M,N)),(ι`a,1)∗g0,1/N)

= (p̂r2,λ̄ )∗(p̂r1,λ̄ )
∗ · ÃFM,N,`a = T ′(λ̄ ) · ÃFM,N,`a.

Since ` - N, we have that ÃFM,N,`a = σ
−1
` · ÃFM,N,a, thanks to Proposition 3.1.8.

Hence we get the first term in the claimed equation.

Step 3. We are now left with computing (�) :=(π2,λ )∗(ιa,(λ ))∗(Y (M,N(`)),g0,`−1/N).
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The commutative diagram we are using this time is the following

Y (M,N(`)) Y ∗(M,N(λ ))

Y (M,N) Y ∗(M,N),

ιa,(λ )

π1,λ

ιa,1

where again the vertical arrows are the natural projections. We use this commutative

square as above, applying a result like [LLZ14, Lemma 2.4.5]. Hence we get

(�) = (π2,λ )∗(π1,λ )
∗(ιa,1(Y (M,N)),(ιa,1)∗g0,`−1/N)

We have, using Proposition 2.1.14(i), (ιa,1(Y (M,N)),(ιa,1)∗g0,`−1/N) =
(

x−1 0

0 x−1

)∗
·

(ιa,1(Y (M,N)),(ιa,1)∗g0,1/N), where we chose x ∈ Ẑ× to be a lift of ` ∈ (Z/NZ)×.

We have

(ιa,1(Y (M,N)),(ιa,1)∗g0,`−1/N) =
(

x−1 0

0 x−1

)∗
· ÃFM,N,a, (3.3.2)

Using the equalities (π2,λ )∗(π1,λ )
∗
(

t 0

0 t−1

)∗
= T ′(λ ), where t ∈ Ô×F is a lift of λ ∈

(OF/N)× and
(

x−1 0

0 x−1

)∗
= 〈`−1〉σ−2

` , we find

(π2,λ )∗(π1,λ )
∗
(

x−1 0

0 x−1

)∗
= σ

−2
` 〈λ̄

−1〉T ′(λ ), (3.3.3)

Combining (3.3.2) and (3.3.3), we find

(�) = σ
−2
` 〈λ̄

−1〉T ′(λ ) · ÃFM,N,a

Combining this result with the ones of the previous steps we proved the statement.

We now have all the ingredients for proving Theorem 3.3.1.

Proof of Theorem 3.3.1. We need to compute (pr1,`)∗((p̂r2,`)∗(ÃF`M,`N,a)). By

Theorem 3.3.6, this class is equal to

(pr1,`)∗(U ′(`)−σ`)(ÃFM,`N,a).
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Applying Lemma 3.2.2, we can rewrite the operator acting on ÃFM,`N,a as

(T ′(`)−σ`)(pr1,`)∗−〈λ−1〉T ′(λ̄ )(pr2,λ )∗(pr1,λ̄ )∗

−〈λ̄−1〉T ′(λ )(pr1,λ )∗(pr2,λ̄ )∗+ 〈`
−1〉(pr2,`)∗.

In order to compute the image of ÃFM,`N,a under (pr1,`)∗ and (pr2,`)∗ we apply

Theorem 3.3.5.1 and 3.3.5.2 respectively. The remaining terms can be computed

applying Theorem 3.3.7 combined again with Theorem 3.3.5.1. One then finds that

the Hecke polynomial obtained is equal to the one claimed in the theorem, using the

explicit description of P′`(X) provided in Definition 3.2.3 and Remark 3.2.4.



Chapter 4

Asai–Flach classes norm relations by

means of local smooth representation

theory

This chapter is devoted to the proof of norm relations for Asai–Flach classes, re-

moving the assumption for split primes introduced in Chapter 3. We will work with

classes in the motivic cohomology of the Hilbert modular surface with coefficients

in the sheaves of § 2.3.2. In the case of trivial coefficients we recover the classes of

Chapter 3. To achieve a proof of norm relations for all inert and split primes, one

needs to change completely the strategy: following ideas of [LSZ20a], we re-define

the motivic classes using a representation theoretic language and prove some result

using local smooth representation theory to deduce norm relations. The content of

this chapter appeared in [Gro20].

4.1 Structure of the chapter
Let F be a real quadratic field as above and consider the embedding of algebraic

groups over Q

H := GL2 ↪→ G := ResF/QGL2 . (4.1.1)

We will be working with representations Π of GL2(AF, f ), where AF, f denotes the

finite adèles over F , which are the finite part of automorphic representations of

GL2,F . Equivalently we can view Π as a representation of G(A f ), where A f are the
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finite adèles over Q. At every place ` we have a representation of G(Q`), which,

depending on ` has the following shape:

• if ` is inert and hence G(Q`) = GL2(F̀ ) where F̀ is an unramified quadratic

extension of Q`, the representation is Π`;

• if `= v1 · v2 is split and hence G(Q`)' GL2(Q`)×GL2(Q`), the representa-

tion is Πv1⊗Πv2 .

In order to (re)define the Euler system classes, we define a special map A F k,k’,j
mot

for k,k′ ≥ 0 integers and 0 ≤ j ≤ min(k,k′) with values in W = H3
mot(YG,D(2)),

where YG is the Shimura variety associated to G and D is a motivic sheaf depending

on k,k′, j (cfr. § 2.3.2). Such map will be of “global nature”, more precisely it is a

map

A F k,k’,j
mot : S (A2

f ,Q)⊗H (G(A f ),Q)−→ H3
mot(YG,D(2))

satisfying some conditions of H(A f )×G(A f )-equivariance. Here S (A2
f ,Q) de-

notes the space of Schwartz functions on A f and H (G(A f ),Q) the Hecke algebra

over G(A f ). The Asai–Flach classes will be defined as images via A F k,k’,j
mot of

certain elements in S (A2
f ,Q)⊗H (G(A f ),Q). In §4.6 we recall the definition of

Eisenstein classes as H(A f )-equivariant maps

S (A2
f ,Q)−→ H1

mot(YH ,TSymk HQ(E )(1)).

In particular if k = 0 and φ = ch((a,b)+NẐ) for some N ≥,a,b ∈Q2−NZ2, then

gφ = ga/N,b/N , the Siegel unit of Definition 2.1.11.

The global map A F k,k’,j
mot is defined in §4.7 using the Eisenstein classes map

and the pushforward in motivic cohomology induced by (4.1.1), as in (2.3.2). Prov-

ing norm relations (in motivic cohomology) will turn out to be equivalent to proving

relations of such classes locally at a certain prime `, i.e. we will be looking at a map

(A F k,k’,j
mot )` : S (Q2

` ,Q)⊗H (G(Q`),Q)−→ H3
mot(YG,D(2)).

While we will be able to prove p-direction norm relations already in motivic coho-
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mology, in order to prove “tame norm relations” we will have strong assumptions on

the target of such map. We will have to apply the étale regulator and Hochschild—

Serre spectral sequence to pass to Galois cohomology and finally take the projection

to an automorphic representation of G(A f ) as above (see § 4.8.2). The local com-

ponents Πv at a “good prime” v of F will be an irreducible spherical principal series

representation IGL2(Fv)(χ,ψ), for χ,ψ unramified characters of F×v . Hence we will

need to work and prove results for maps

Z : S (Q2
` ,C)⊗H (G)−→σ =

IGL2(F̀ )(χ̃, ψ̃) if ` is inert,

IGL2(Q`)(χ1,ψ1)⊗ IGL2(Q`)(χ2,ψ2) if ` splits,

where, by abuse of notation, we denoted by H (G) the Hecke algebra over G(Q`).

The first sections of the chapter are devoted to the study of these local repre-

sentations. First we recall in §4.2 some useful tools to work with representations

of GL2 over a local field. The following sections, §4.3 and §4.4, should be thought

in parallel: we move to local representations of G over Q` proving the same re-

sults for both the inert and split case, giving explicit descriptions of local L-factors

L(As(σ),s) of principal series representations σ as above as local zeta integrals.

In §4.5, we will relate images under maps as above of elements in S (Q2
` ,C)⊗

H (G) given by Definitions 4.2.28, 4.5.16 and 4.5.17. The main results of this

section are

Proposition 4.1.1 (Proposition 4.5.19). For any Z : S (Q2
` ,C)⊗H (G) → W,

where W is a smooth complex representation of G(Q`) we have

Z(φ1,∞⊗ ch(ηm+1Km,n)) =


1
`U
′(`)

1
`−1(U

′(`)−1)
·Z(φ1,∞⊗ ch(ηmKm,n))

if m≥ 1

if m = 0.

Corollary 4.1.2 (Corollary 4.5.20). Let W = σ∨ for σ a principal series represen-

tation with central character χσ . Let χ = | · |1/2+kτ , for τ a finite order character
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and k ≥ 0, and ψ = | · |−1/2. Assume

χψ ·χσ = 1 (4.1.2)

and, if ` is inert, assume the pair of characters (χ̃, ψ̃) is different, when restricted

to Q×` , from the pair (χ,ψ). Let Z : S (Q2
` ,C)⊗H (G)→ σ∨ such that it factors

as Z= Z′ ◦ f , where f is the Siegel section map defined in §4.2 and

Z′ : IGL2(Q`)(χ,ψ)⊗H (G)→ σ
∨.

Then we have

Z(φ1,∞⊗ (ch(K)− ch(η1K))) = `
`−1L(As(σ),h)−1 ·Z(φ0,ch(K)).

While the proposition can be proved directly for any such Z, the corollary

follows from Theorem 4.5.8. It states the analogous equality for any function

in HomGL2(Q`)(IGL2(Q`)(χ,ψ)⊗ σ ,C) (which is in canonical bijection with the

space of functions Z′ as above). The proof of the theorem follows from an ex-

plicit proof of the claimed equality for a specific choice of a nonzero element

zχ,ψ ∈ HomGL2(Q`)(IGL2(Q`)(χ,ψ)⊗ σ ,C) built using the local zeta integrals of

§§2,3 (see Definition 4.5.6). One then crucially needs the following multiplicity

one result in order to prove it for any z ∈ HomGL2(Q`)(IGL2(Q`)(χ,ψ)⊗σ ,C).

Theorem 4.1.3 (Theorem 4.5.1, Multiplicity one). Let σ ,χ,ψ satisfying (4.1.2)

and assume σ satisfies in the inert case the same additional condition of the Corol-

lary. Assume that χψ−1 6= | · |−1. We have

dim
(
HomGL2(Q`)(IGL2(Q`)(χ,ψ)⊗σ ,C)

)
≤ 1.

This theorem follows from [Pra90, Theorem 1.1] in the case where ` splits and

IGL2(Q`)(χ,ψ) is irreducible and it is proved in Theorem 4.5.1 for the remaining

cases. We use tools of Mackey theory following the strategy used by Prasad in op.
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cit.

The motivic Asai–Flach elements defined in § 4.7 are image of elements in

S (A2
f ,Q)⊗H (G(A f )) that are described at every place in terms of the elements

considered in the above Proposition and Corollary. These classes are closely related

to the ones constructed in [LLZ18] and in the previous chapter. In fact, the bottom

class will be exactly the same. The perturbation of the embedding to obtain the other

classes will be encoded by the action of the Hecke algebra, with some modified

factors which will allow to prove norm relations without the error term divisible by

`− 1 appearing in [LLZ18] (and Corollary 3.3.4). More details about this can be

found in 4.7.3.

Finally in §4.8 we prove some pushforward compatibilities of such motivic

classes (Theorem 4.8.1 and 4.8.2, corresponding to Theorem 3.3.5 and 3.3.6) using

the local result given by the above Proposition. We then use these classes to find

elements in Galois cohomology of the Asai representation of a Hilbert cuspidal

eigenform and prove Euler system norm relations (Theorem 4.8.11 and 4.8.12);

vertical norm relations follow from the p-direction compatibility of motivic classes,

while tame norm relations rely on the local result of the above Corollary.

4.2 Local representation theory for GL2

In this section we recall the standard tools of local representation theory that will be

useful later in the proof of norm relations. We follow [Bum97, Chapter 4].

We let E be a non-Archimedean local field and denote by O,p,ϖ respectively

the ring of integers in E, the maximal ideal and a fixed uniformiser of p. Let | · | be

the norm and q such that |ϖ |= q−1. We also fix an Haar measure dx on E and d×x

on E× such that
∫
O dx = 1,

∫
O× dx× = 1. For a smooth character χ of E× we define

its local L−factor

L(χ,s) = L(χ| · |s,0) =

(1−χ(ϖ)q−s)−1 if χ|O× = 1

1 otherwise.
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4.2.1 Induced representations

We recall here some basics about induced representations of totally disconnected

topological groups. See for example [BZ76, §§2.21-2.29]. Let X be a group as

above with a right Haar measure dR on X and a left Haar measure dL.

Definition 4.2.1. The modular quasicharacter δX of X is defined by dR(x) =

δX(x)dL(x). If δX = 1, X is said to be unimodular.

A trivial example of unimodular group is any abelian group. A less trivial

example is X = GLn(E). A group which is not unimodular is the Borel subgroup B

of GLn(E). For n = 2, its modular quasicharacter is given by

δB(
(

a b

0 d

)
) = | ad |.

Assume now X is locally compact. Consider Y a closed subgroup of X . We

have a restriction functor from the category of smooth representations of X to

smooth representations of Y . This functor has a left and a right adjoint, given by

induction and compact induction.

Definition 4.2.2. Let (V,τ) be a smooth representation of Y . We denote by IndX
Y τ

the space of smooth functions f : X →V satisfying the following condition

f (yx) = δ
−1/2
X (y)δ 1/2

Y (y)τ(y) f (x) for every x ∈ X ,y ∈ Y .

We denote by c- IndX
Y (τ) the subspace of IndX

Y τ consisting of functions which in ad-

dition are compactly supported modulo Y . This coincides with IndX
Y (τ) when X/Y

is compact. These are X-representations with action of X given by right multiplica-

tion.

Theorem 4.2.3 (Frobenius reciprocity). Let (W,σ) be a smooth representation of

X and (V,τ) a smooth representation of Y . denote by ( )∨ the smooth dual of a

representation. We then have the following isomorphisms:

HomX(σ , IndX
Y τ)' HomY (σ|Y ,δ

1/2
Y δ

−1/2
X τ);
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HomX(c- IndX
Y τ,σ∨)' HomY (δ

−1/2
Y δ

1/2
X τ,(σ|Y )

∨).

If X is a totally disconnected locally compact algebraic group, Y is a closed

subgroup and (V,τ) is a finite dimensional complex smooth representation of Y ,

we can realise induced representations as sections of a complex vector bundle B

(an `-sheaf in the notation of [BZ76, 1.13]) over X/Y with fibres V . Let B be the

quotient space of X×V by the equivalence relation given by

(x,v)∼ (xy,δ 1/2
X (y)δ−1/2

Y (y)τ(y)v) for x ∈ X ,y ∈ Y,v ∈V.

This defines a complex vector bundle over X/Y , with fibres isomorphic to V , in the

sense of [BZ76, 1.13, 2.23]. Moreover, writing Γ(X/Y,B) for the smooth sections

of B and Γc(X/Y,B) for the compactly supported smooth sections, we have

Γ(X/Y,B) = IndX
Y (τ) and Γc(X/Y,B) = c- IndX

Y (τ).

We now state a general lemma about compactly supported smooth sections of line

bundles on totally disconnected locally compact algebraic groups (see for example

[Pra90, Lemma 5.1]).

Lemma 4.2.4. Let X be a totally disconnected locally compact algebraic group, Z

a closed subgroup and B a line bundle over X. Then we have an exact sequence

0→ Γc(X−Z,B|X−Z)→ Γc(X ,B)→ Γc(Z,B|Z)→ 0.

We now apply this lemma in a particular case and find an exact sequence

of induced representations that will be useful later. Let H,J be closed subgroups

of a totally disconnected locally compact algebraic group G and τ a smooth one-

dimensional representation of J. Assume that the quotient H\G/J has two elements.

This means that the action of H on the space G/J has two orbits, one open and one

closed. We can write these two orbits as H/H1,H/H2, where H1 = StabH(1 ·J) and

H2 = StabH(ε · J), where ε ∈ G such that ε · J is in the open orbit. We can compute
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these subgroups as follows

H1 = H ∩ J, H2 = H ∩ ε
−1Jε.

Applying the above lemma for Z = H/H1,X −Z = H/H2 and normalising appro-

priately one finds an exact sequence of H-modules

0→ c- IndH
H2

τ2→ (c- IndG
J τ)|H → c- IndH

H1
τ1→ 0, (4.2.1)

where τ1 = δ
1/2
J ·δ−1/2

H1
· τ|H1 and τ2 is a representation of H2 given by

τ2(h) = δ
1/2
J (εhε

−1)δ
−1/2
H2

(h)τ(εhε
−1).

4.2.2 Principal series representations

Definition 4.2.5. Let H = GL2(E) and ξ ,ψ two quasicharacters of E×. We define

a space of functions on H as follows

IH(χ,ψ) := { f : H→ C smooth : f (
(

a ∗

0 d

)
·h) =

∣∣ a
d

∣∣1/2
χ(a)ψ(d) f (h)}

We will denote IH(χ,ψ) simply as I(χ,ψ); notice that this is the space given

by the normalised induction from the Borel subgroup B(E) of GL2(E) (consisting

of upper triangular matrices). We see I(χ,ψ) as a GL2(E)-representation letting

GL2(E) act by right translation, i.e. for g ∈ GL2(E)

g · f (h) = f (hg) for every f ∈ I(χ,ψ),h ∈ GL2(E).

In other words letting τ be the one dimensional representation of B(E) given by

τ(
(

a ∗

0 d

)
) = χ(a)ψ(d), we have I(χ,ψ) = IndGL2(E)

B(E) τ .

Definition 4.2.6. The GL2(E)-representations I(χ,ψ), for χ,ψ quasicharacters of

E×, are called principal series representations.

To characterise such representations, we recall the definition of the intertwin-
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ing operator. Fix χ,ψ and write them as

χ = | · |s1ξ1, ψ = | · |s2ξ2,

where si ∈ C and ξi are unitary characters. Let f ∈ I(χ,ψ). We write, for h ∈

GL2(E),

M f (h) =
∫

F
f (w ·mx ·h)dx,

where w =
(

0 −1

1 0

)
and mx =

(
1 x

0 1

)
.

The following proposition determines when this integral makes sense and in

which space M f will be defined.

Proposition 4.2.7. [Bum97, Proposition 4.5.6]. If Re(s1− s2) > 0 then the above

integral is absolute convergent and it defines a nonzero intertwining map

M : I(χ,ψ)→ I(ψ,χ)

f 7→M f .

In the case where Re(s1− s2) < 0 we clearly have an analogous operator M

obtained by switching χ and ψ . The procedure for defining such an operator in

the case where Re(s1− s2) = 0 uses flat sections and the fact that we can write

GL2(E) = B(E) ·K, where K = GL2(O) (known as Iwasawa decomposition, see

[Bum97, Proposition 4.5.2]). Indeed one starts with noticing that f ∈ I(χ,ψ) is

uniquely determined by its restriction to K, which satisfies

f (
(

a b

0 d

)
· k) = ξ1(a)ξ2(d) f (k),

for a,d ∈O×,b ∈OF and k ∈ K. We denote by V0 the space of smooth functions on

K satisfying this condition, having fixed ξ1,ξ2. Then for any s1,s2 ∈ C and f0 ∈V0

there exists a unique extension of f0 to an element fs1,s2 in Vs1,s2 := I(|·|s1ξ1, |·|s2ξ2).

Fixing f0, the function

(s1,s2) 7→ fs1,s2 , (4.2.2)
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is called a flat section. We then have

Proposition 4.2.8. [Bum97, Proposition 4.5.7]. Fix f0 ∈V0. For a fixed h∈GL2(E)

the integral M fs1,s2(h) defined as above for Re(s1− s2)> 0 has analytic continua-

tion to all s1,s2 where χ 6= ψ . We hence have defined an intertwining operator

M : I(| · |s1ξ1, | · |s2ξ2)→ I(| · |s2ξ2, | · |s1ξ1).

We have the following theorem characterising principal series representations.

Theorem 4.2.9. [Bum97, Theorem 4.5.1 and 4.5.2]. Let χ,ψ be quasicharacters of

E×. Then I(χ,ψ) is an irreducible GL2(E)-representation except in the following

two cases

(i) if χψ−1 = | · |−1, then I(χ,ψ) has a one-dimensional invariant subspace and

the quotient representation is irreducible;

(ii) if χψ−1 = | · |, then I(χ,ψ) has an irreducible codimension one invariant

subspace.

If I(χ,ψ) is irreducible, then it is isomorphic to I(ψ,χ) via the intertwining op-

erator M. Moreover if we have two such representations, for quasicharacters

χ1,ψ1,χ2,ψ2, and HomGL2(E)(I(χ1,ψ1), I(χ2,ψ2)) is non zero then either χ1 = χ2

and ψ1 = ψ2 or χ1 = ψ2 and ψ1 = χ2.

Another tool we need to introduce is a pairing on I(χ,ψ)× I(χ−1,ψ−1) which

identifies I(χ−1,ψ−1) with the smooth dual of I(χ,ψ). See [Bum97, Proposition

4.5.5]. The pairing is defined by an integral as follows

Definition/Proposition 4.2.10. The following integral defines a perfect pairing

〈 , 〉 : I(χ,ψ)× I(χ−1,ψ−1)→ C

〈 f1, f2〉 :=
∫

GL2(O)
f1(h) f2(h)dh,

for every f1 ∈ I(χ,ψ), f2 ∈ I(χ−1,ψ−1).
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4.2.3 Whittaker models

Let Ψ be a fixed nontrivial additive character of E.

Definition 4.2.11. Let V be a smooth representations of GL2(E). A Whittaker

functional on V is a linear functional λ : V → C satisfying

λ (mx · v) = Ψ(x)λ (v),

for every x ∈ F,v ∈V , where as above mx =
(

1 x

0 1

)
.

Proposition 4.2.12. [Bum97, Proposition 4.5.4]. The dimension of the space of

Whittaker functionals for the representation I(χ,ψ) is exactly 1.

We have an explicit example of a Whittaker functional µ for I(χ,ψ). The

above proposition tells us that every other Whittaker functional for this representa-

tion is scalar multiple of µ .

Definition 4.2.13. We define µ : I(χ,ψ)→ C by

µ( f ) =
∫

F
f (w ·mx)Ψ(−x)dx,

where w is as defined in the previous section.

Remark 4.2.14. With the above notation, this integral converges if Re(s1−s2)> 0,

but we can proceed with an analytic continuation to every s1,s2 using flat sections

as above.

Definition 4.2.15. The Whittaker model of I(χ,ψ) is defined to be the function

W : f 7→
(

Wf : h 7→ µ(h · f ) =
∫

F
f (w ·mx ·h)Ψ(−x)dx

)

It satisfies Wf (mx ·
(

z 0

0 z

)
·h) = Ψ(x) ·χψ(z) ·Wf (h).

We can associate to every Whittaker functional a Whittaker model as in the

previous definition. The dimension one proposition tells us that they differ by a

scalar.
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Remark 4.2.16. One similarly defines a Whittaker model for every (V,π) smooth

representation of GL2(E). For any Whittaker functional λ , one lets Wλ : v 7→ (Wλ ,v :

h 7→ λ (h · v)). The image of Wλ defines a subspace of the space of functions Λ on

GL2(E), satisfying Λ(mx · h) = Ψ(x) ·Λ(h). The group GL2(E) acts naturally by

right translation on this space, and the image of Wλ is invariant for this action.

Such image is isomorphic as GL2(E)-representation to (V,π) and indeed provides

a “concrete” model for (V,π).

Lemma 4.2.17. For the Whittaker model of I(χ,ψ) we have

W(a b

0 d

)
· f
(
(

y 0

0 1

)
) = Ψ(d−1by) ·χψ(d) ·Wf (

(
d−1ay 0

0 1

)
).

Proof. This is straightforward rewriting

(
y 0

0 1

)
·
(

a b

0 d

)
= md−1by ·

(
d 0

0 d

)
·
(

d−1ay 0

0 1

)
and using Wf (md−1by ·

(
d 0

0 d

)
·
(

d−1ay 0

0 1

)
) = Ψ(d−1by) ·χψ(d) ·Wf (

(
d−1ay 0

0 1

)
)

4.2.4 Spherical representations

Let (V,π) an irreducible admissible representation of GL2(E). One can consider

the subspace V GL2(O) of vectors fixed by the action of GL2(O). This is at most one

dimensional (see [Bum97, Theorem 4.6.2]).

Definition 4.2.18. An irreducible admissible representation (V,π) of GL2(E) is

called spherical if it contains a GL2(O)−fixed vector.

Remark 4.2.19. The reason for which we are interested in spherical representations

is that automorphic representations of GL2 decompose into a restricted product of

local representations and these are all spherical outside a finite set of places.

Example 4.2.20 (Principal series representations). The representation I(χ,ψ) with

χ,ψ unramified and χψ 6= | · |±1 is spherical. To see this, we define the normalised

spherical vector ϕ0 as function on GL2(E) by

ϕ0(h) = ϕ0(b · k) := |a/d|1/2
χ(a)ψ(d), where b =

(
a ∗

0 d

)
,k ∈ K = GL2(O).
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To write h∈GL2(E) as b ·k, we use again Iwasawa decomposition. It is clear by the

definition that this function is fixed by K. We check that it is well defined and that

it is an element of I(χ,ψ). Suppose that bk = b′k′ for b =
(

a ∗

0 d

)
,b′ =

(
a′ ∗

0 d′

)
k ∈ K =

GL2(O). Then we have b = b′u with u ∈ K ∩B(E) i.e. u =
(

x ∗

0 y

)
with x,y ∈ O×.

Since χ(x) = ψ(y) = 1 and |x|= |y|= 1, we find ϕ0(bk) = ϕ0(b′k′). To check that

this defines an element of I(χ,ψ) we compute ϕ0(b′h) = ϕ(b′bk), where as before

h = bk, b =
(

a ∗

0 d

)
,b′ =

(
a′ ∗

0 d′

)
,k ∈ K = GL2(O). Hence

ϕ0(b′h)=ϕ0(
(

aa′ ∗

0 dd′

)
·k)= |aa′/dd′|1/2

χ(aa′)ψ(dd′)= |a′/d′|1/2
χ(a′)ψ(d′)ϕ0(h).

It turns out that this example is enough to determine every spherical represen-

tation (of dimension greater than 1).

Theorem 4.2.21. [Bum97, Theorem 4.6.4]. Let (V,π) be a spherical representation

of GL2(E) of dimension greater than 1. Then π is a spherical principal series

representation.

Remark 4.2.22. More precisely, a spherical representation π will be isomorphic to

IH(χ,ψ), where χ,ψ are the unramified quasicharacters of E× determined by

χ(ϖ) = α, ψ(ϖ) = β ,

and α,β are the roots of the polynomial X2− q−1/2λX + µ , where λ ,µ are the

eigenvalues of T (p),R(p) on the one-dimensional space of spherical vectors of V .

Indeed the Hecke algebra of locally constant compactly supported complex valued

functions on GL2(E) acts on (V,π) via the formula ξ · v =
∫

GL2(E) ξ (g)(π(g)v)dg

(see Definition 4.3.1). The action of the subalgebra of GL2(O)-biequivariant func-

tions preserves the one-dimensional space V GL2(O). In particular we can consider

the eigenvalues for the action on spherical vectors of the operators

T (p) := ch(GL2(O)
(

ϖ 0

0 1

)
GL2(O)), R(p) := ch(GL2(O)

(
ϖ 0

0 ϖ

)
GL2(O)).

We now want to characterise the Whittaker model of Definition 4.2.13 for ϕ0 ∈
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I(χ,ψ) as in the above example. First we let

α := χ(ϖ), β := ψ(ϖ).

We have the following result, that will be extremely helpful later. We write W0 :=

Wϕ0 .

Theorem 4.2.23. [Bum97, Theorem 4.6.5]. Let α,β as above. Then for any y∈E×,

let m := ord(y). We have

(1−q−1
αβ
−1)−1W0

((
y 0

0 1

))
=

0 if m < 0

q−m/2 · αm+1−β m+1

α−β
if m≥ 0

We want to work with a Whittaker model W such that for Wϕ0

((
y 0

0 1

))
= 1 if

y ∈ O×.

Definition 4.2.24. The normalised Whittaker model of I(χ,ψ) is defined by (1−

q−1αβ−1)−1 ·W , for α,β as above.

4.2.5 Siegel sections

This section contains exactly the same results and definitions of [LSZ20a, §3.2].

We report them for the sake of completeness and refer to loc. cit. for the proofs.

Definition 4.2.25. Let S (Q2
` ,C) be the space of Schwartz functions on Q2

` . For

φ ∈S (Q2
` ,C), we write φ̂ for its Fourier transform, i.e.

φ̂(x,y) =
∫
Q`

∫
Q`

e`(xv− yu)φ(u,v)du dv,

where e` is the standard additive character on F =Q`, mapping `−n to exp(2πi/`n).

In the first part of [LSZ20a, Proposition 3.2.2], the authors define a map from

S (Q2
` ,C) to IH(χ,ψ) for χ,ψ characters of Q×` using explicit integrals. With the
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same notation we write

S (Q2
` ,C)→ IH(χ,ψ)

φ 7→ fφ ,χ,ψ .

Proposition 4.2.26. The above mentioned map satisfies

fg·φ ,χ,ψ(h) = χ(detg)−1|detg|−1/2 fφ ,χ,ψ(hg),

fĝ·φ ,χ,ψ(h) = ψ(detg)−1|detg|−1/2 f
φ̂ ,χ,ψ(hg).

In particular if ψ = | · |−1/2 and χ is unramified, then the map

S (Q2
` ,C)→ IH(χ,ψ)

φ 7→ Fφ ,χ,ψ := f
φ̂ ,χ,ψ

is H(Q`)-equivariant.

Proposition 4.2.27. With notation as above, we have

M( fφ ,χ,ψ) =
ε(ψ/χ)

L(χψ−1,1)
· f

φ̂ ,ψ,χ ,

where ε(ψ/χ) is the local ε-factor (equal to 1 if ψ/χ is unramified).

We now define some special Schwartz function that will be useful later.

Definition 4.2.28. For integers t ≥ 0 we define φt ∈S (Q2
` ,C) as follows

• for t = 0, φ0 := ch(Z`)ch(Z`),

• for t > 0, φt := ch(`tZ`)ch(Z×` ).

This functions are preserved by the action of

KH,0(`
t) := {

(
a b

c d

)
∈ H(Z`) : c≡ 0 mod `t}.
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Lemma 4.2.29. Let χ,ψ be unramified characters. The function fφt ,χ,ψ is sup-

ported on B(Q`)KH,0(`
t) and

fφt ,χ,ψ(1) =

1 if t = 0

L(χψ−1,1)−1 if t ≥ 1.

Definition 4.2.30. For integers t ≥ 1 we define φ1,t ∈ S (Q2
` ,C) to be

ch(`tZ`)ch(1+ `tZ`). This function is preserved by the action of

KH,1(`
t) := {γ ∈ H(Z`) : γ ≡

(
∗ ∗

0 1

)
mod `t}.

4.3 Zeta integrals for G(Q`) = GL2(F̀ ) (inert prime

case)
Let E be an unramified quadratic extension of Q`. We will work with the represen-

tation σ = IG(χ,ψ) of G = GL2(E). We denote by K the subgroup GL2(O), where

O is the ring of integers of E.

4.3.1 Action of the Hecke algebra on Whittaker model

First we recall the definition of Hecke algebra acting on σ .

Definition 4.3.1. We denote by H (G) the Hecke algebra of locally constant com-

pactly supported C-valued functions on G = GL2(E). It is an algebra under convo-

lution, defined by

φ1 ?φ2(g) :=
∫

G
φ1(gh−1)φ2(h)dh,

for φ1,φ2 ∈H (G). Moreover we regard σ as left H (G)- module via

φ · f =
∫

G
φ(g)(g · f )dg.

Lemma 4.3.2. We have

g1 · (φ · (g2 · f )) = φ(g−1
1 (−)g−1

2 ) · f .
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Example 4.3.3 (The operator U(`)). We define U(`) ∈H (G) to be

U(`) := 1
Vol(K′) ch(K′ ·

(
` 0

0 1

)
·K′),

where K′ is any subgroup of K contained in {γ ∈ K : γ ≡
(
∗ ∗

0 1

)
mod `} and contain-

ing the subgroup of unipotent matrices. We can write K′ ·
(

` 0

0 1

)
·K′ as union of left

cosets

(K′ ·
(

` 0

0 1

)
·K′) =

⊔
γ∈J

γ ·
(

` 0

0 1

)
·K′

where J is a set of representatives for the left quotient (
(

` 0

0 1

)
K′
(

`−1 0

0 1

)
∩K′)\K′. We

claim that we can take J = {
(

1 u

0 1

)
}u∈(O/`O). Indeed the subgroup for which we are

taking the quotient is the subgroup K′′ of matrices of
(

a b

c d

)
∈K′ such that b≡ 0 mod

`. The matrices considered are clearly in distinct cosets and since for any
(

a b

c d

)
∈K′,

d 6≡ 0 mod ` we can choose u ∈ O/`O such that b≡ ud mod `. In other words

(
1 u

0 1

)−1(
a b

c d

)
∈ K′′.

Hence we can rewrite

(K′ ·
(

` 0

0 1

)
·K′) =

⊔
u∈(O/`O)

(
1 u

0 1

)
·
(

` 0

0 1

)
·K′ =

⊔
u∈(O/`O)

(
` u

0 1

)
·K′.

We will need to define an appropriate additive character of E and then work

with the normalised Whittaker model for σ as in Definition 4.2.24. Consider e` the

standard additive character on Q`. Let us fix δ ∈OE such that E =Q`⊕Q`(δ ) and

such that the trace of δ is zero. We define an additive character Ψ on E letting

Ψ : x→ e`(TrE/Q`
(δ−1x)).

We can assume v(δ ) = 0 since E/Q` is unramified. This character has conductor

OE (see for example [RV99, Exercise 3(e), Chapter 7]).
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We describe how the action of the operator U(`) of Example 4.3.3 modifies the

Whittaker model.

Proposition 4.3.4. Let ϕ ∈ σ a spherical vector. Then for any y ∈ E×, we have

WU(`)·ϕ

((
y 0

0 1

))
=


0 if v(y)< 0

`2Wϕ

((
`y 0

0 1

))
if v(y)≥ 0.

Proof. We prove the result for W as in Definition 4.2.15. We can also assume φ = φ0

the normalised spherical vector. By definition

WU(`)·ϕ0

((
y 0

0 1

))
= µ

((
y 0

0 1

)
· (U(`) ·ϕ0)

)
= ∑

u∈(OE/`OE)

µ

((
y 0

0 1

)(
` u

0 1

)
·ϕ0

)
,

where in the second equality we used the decomposition of U(`) as in Example

4.3.3 and the fact that ϕ0 is K-invariant. Now we write

(
y 0

0 1

)(
` u

0 1

)
=
(

1 yu

0 1

)(
y` 0

0 1

)
= myu ·

(
y` 0

0 1

)
.

So we find

WU(`)·ϕ0

((
y 0

0 1

))
= ∑

u∈(OE/`OE)

Ψ(yu)Wϕ0

((
`y 0

0 1

))
.

If v(`y) < 0, i.e. v(y) < −1, applying Theorem 4.2.23, we find that the above

quantity is zero. If v(`y) = 0, i.e. v(y) =−1, the sum is equal to

∑
u∈(OE/`OE)

Ψ(yu) = ∑
0≤i, j≤`−1

Ψ(y(i+δ j)) = ∑
0≤i, j≤`−1

Ψ(iy)Ψ(δ jy))

= ∑
0≤i, j≤`−1

e`(Tr(δ−1y))ie`(Tr(y)) j.

Having assumed that v(δ ) = 0 and having v(y) =−1, we have that at least one of the

two terms e`(Tr(δ−1y)),e`(Tr(y)) is equal to ζ` = exp2πi/`. Assume for example
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e`(Tr(δ−1y)) = ζ`, we can rewrite the sum as

∑
0≤ j≤`−1

e`(Tr(y)) j ·

(
∑

0≤i≤`−1
ζ

i
`

)
= 0.

Finally, if v(y`)> 0, i.e. y ∈ OF , Ψ(yu) = 1 and hence

WU(`)·ϕ0

((
y 0

0 1

))
= `2Wϕ0

((
`y 0

0 1

))
.

Hence the result.

4.3.2 Zeta integrals

As above fix the irreducible spherical principal series representation σ = IG(χ,ψ),

for χ,ψ quasicharacters of E×. Let

α := χ(`), β = ψ(`)

and let χσ the central character of σ , i.e. χσ = χψ . We define the local Asai

L-factor1 of σ to be

L(As(σ),s) := [(1−α`−s)(1−β`−s)(1−αβ`−2s)]−1,

Moreover if η is an unramified character of Q×` , we let

L(As(σ ⊗η),s) = [(1−αη(`)`−s)(1−βη(`)`−s)(1−αβη(`)2`−2s)]−1.

Definition 4.3.5. Let σ as above and η an unramified character of Q×` . For every

f ∈ σ , we define

Z(σ ,η , f ,s) := L(As(σ ⊗η),s)−1
∫
Q×`
|y|s−1

η(y)W f

((
y 0

0 1

))
d×y.

1The standard L-factor of σ is [(1−α`−2s)(1− β`−2s)]−1 and can be obtained by the same
integral we consider here, but integrating over y ∈ E× with norm and measure on E rather than on
Q`. It will be clear later the reason of the name Asai L-factor.
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The following three lemmas will be very useful.

Lemma 4.3.6 (Zeta integral at the spherical vector). There exist r(σ ,η) ∈ R such

that for ever f ∈ σ and s ∈ C such that Re(s) > r(σ ,η), the above integral is

absolutely convergent and, as function of s, lies in C[`s, `−s]; in particular it has

analytic continuation for all s ∈ C. Moreover, if ϕ0 is the normalised spherical

vector as above, we have

Z(σ ,η ,ϕ0,s) = L(η2
χσ ,2s)−1.

Proof. It is enough to check convergence and analytic continuation for f = g ·ϕ0,

where g ∈ G. The validity of these statements for such f depends only on the class

of g in N\G/G(OE). Since representatives of this quotient are elements of the form(
a 0

0 d

)
, Lemma 4.2.17 implies that it suffices to look at the integral for f = ϕ0.

Applying Theorem 4.2.23 (notice that in our case q = `2), we find

∫
Q×`
|y|s−1

η(y)Wϕ0

((
y 0

0 1

))
d×y = ∑

m≥0
(`s−1)−m`−m

η(`)m · α
m+1−β m+1

α−β

= ∑
m≥0

Xm · α
m+1−β m+1

α−β
,

where X = `−sη(`). We can manipulate the latter series and obtain

∑
m≥0

Xm · α
m+1−β m+1

α−β
=

1
α−β

∑
m≥0

(α · (Xα)m−β (Xβ )m)

=
1

α−β

(
α

1−αX
− β

1−βX

)
=

1
(1−αX)(1−βX)

.

The series converges for |αX |C < 1, |βX |C < 1, that is for Re(s) > r(σ ,η), for

some real number depending on σ and η . Substituting X = `−sη(`), for s in this

region, we find

∫
Q×`
|y|s−1

η(y)Wϕ0

((
y 0

0 1

))
d×y = [(1−αη(`)`−s)(1−βη(`)`−s)]−1

= L(As(σ ⊗η),s) · (1−αβη(`)2`−2s)



4.3. Zeta integrals for G(Q`) = GL2(F̀ ) (inert prime case) 107

and (1−αβη(`)2`−2s) = L(χσ η2,2s)−1.

Lemma 4.3.7 (Action of U(`) on the zeta integral). If ϕ0 is the normalised spherical

vector as above, we have

Z(σ ,η ,U(`)ϕ0,s) = `s+1

η(`) [Z(σ ,η ,ϕ0,s)−L(As(σ ⊗η),s)−1]

= `s+1

η(`) [L(η
2
χσ ,2s)−1−L(As(σ ⊗η),s)−1]

Proof. First we apply Proposition 4.3.4 and find

Z(σ ,η ,U(`)ϕ0,s) = `2L(As(σ ⊗η),s)−1
∫
|y|<`
|y|s−1

η(y)W0

((
`y 0

0 1

))
d×y

= `s+1
η(`)−1L(As(σ ⊗η),s)−1

∫
|y|<1
|y|s−1

η(y)W0

((
y 0

0 1

))
d×y,

where in the second equality we used the change of variables y `y. We then

rewrite the integral in the last term as

∫
Q×`
|y|s−1

η(y)W0

((
y 0

0 1

))
d×y−

∫
|y|≥1
|y|s−1

η(y)W0

((
y 0

0 1

))
d×y.

Then we apply Theorem 4.2.23 and obtain

∫
|y|≥1
|y|s−1

η(y)W0

((
y 0

0 1

))
d×y =

∫
Z×`

W0

((
y 0

0 1

))
d×y =

∫
Z×`

d×y = 1.

Putting everything together we find Z(σ ,η ,U(`)ϕ0,s) =

`s+1
η(`)−1L(As(σ ⊗η),s)−1

(∫
Q×`
|y|s−1

η(y)W0

((
y 0

0 1

))
d×y−1

)
= `s+1

η(`)−1(Z(σ ,η ,ϕ0,s)−L(As(σ ⊗η),s)−1).

Lemma 4.3.8 (Action of the Borel subgroup of GL2(Q`)). For any f ∈ σ , a,d ∈

Q×` , we have

Z(σ ,η ,
(

a ∗

0 d

)
· f ,s) =

∣∣d
a

∣∣s−1
χσ (d)η(a−1d) ·Z(σ ,η , f ,s)
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Proof. We apply Lemma 4.2.17 together with the fact that, for our choice of Ψ, we

have Ψ(x) = 1 for every x ∈Q`. We find

Z(σ ,η ,
(

a ∗

0 d

)
· f ,s) = χσ (d)L(As(σ ⊗η),s)−1

∫
Q×`
|y|s−1

η(y)W f

((
d−1ay 0

0 1

))
d×y

= χσ (d)|d/a|s−1
η(a−1d)L(As(σ ⊗η),s)−1

∫
Q×`
|y|s−1

η(y)W f

((
y 0

0 1

))
d×y

= χσ (d)|d/a|s−1
η(a−1d) ·Z(σ ,η , f ,s)

where in the second equality we used the change of variable y d−1ay.

4.4 Zeta integrals for G(Q`) = GL2(Q`)× GL2(Q`)

(split prime case)

4.4.1 Whittaker models for G = GL2×GL2

Let χ1,ψ1,χ2,ψ2 be quasicharacters of Q×` . We now consider a representation of

G = GL2(Q`)×GL2(Q`).

Definition 4.4.1. For χ1,ψ1,χ2,ψ2 as above, let

IG(χ,ψ) := IH(χ1,ψ1)⊗ IH(χ2,ψ2),

i.e. f ∈ IG(χ,ψ) is f : G→ C such that

f ((
(

a ∗

0 d

)
,
(

a′ ∗

0 d′

)
) ·g) =

∣∣ a
d

∣∣1/2
∣∣∣ a′

d′

∣∣∣1/2
χ1(a)ψ1(d)χ2(a′)ψ2(d′) f (g).

We see IG(χ,ψ) as a G-representation letting G act by right translation.

Definition 4.4.2. The G-representations IG(χ,ψ), for χ1,χ2,ψ1,ψ2 quasicharacters

of Q×` are called principal series representations for G.

We need to define what is a Whittaker functional for a representation V of G,

having fixed an additive character Ψ.

Definition 4.4.3. A Whittaker functional on V is a linear functional λ : V → C
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satisfying

λ (mx,x′ · v) = Ψ(x− x′)λ (v),

for every x,x′ ∈Q`,v ∈V , where mx,x′ = (mx,mx′) = (
(

1 x

0 1

)
,
(

1 x′

0 1

)
).

We now define a Whittaker model for σ = IG(χ,ψ), for χ = (χ1,χ2),ψ =

(ψ1,ψ2). We will be using Whittaker models for IH(χ1,ψ1) and IH(χ2,ψ2) as

constructed above. Recall that everything depends on the choice of the additive

character. We will consider the functionals as in Definition 4.2.13, but with differ-

ent choices of the additive character. Fix such an additive character Ψ for which we

want to obtain a Whittaker functional for σ . We then let Ψ1 =Ψ and Ψ2 =Ψ(−(·)).

And write µi : I(χi,ψi)→ C where

µ1( f1) =
∫

F
f1(w ·mx)Ψ1(−x)dx,

µ2( f2) =
∫

F
f2(w ·mx)Ψ2(−x)dx.

And finally let µ : σ → C to be defined by

µ( f1, f2) = µ1( f1) ·µ2( f2).

It is straightforward to see that it is a Whittaker functional for σ .

Definition 4.4.4. We let W be the Whittaker model for σ defined by

W : f 7→
(
Wf : g = (g1,g2) 7→ µ(g · f )

)
From the definition we have, for f = f1⊗ f2,

Wf (g1,g2) = µ1(g1 · f1) ·µ(g2 · f2)

=

(∫
F

f1(w ·mx ·g1)Ψ1(−x)dx
)
·
(∫

F
f2(w ·mx ·g2)Ψ2(−x)dx

)
=W1, f1(g1) ·W2, f2(g2),

where W1, f1,W2, f2 are the Whittaker models for IH(χ1,ψ1) and IH(χ2,ψ2) obtained
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from the functionals µ1,µ2.

Lemma 4.4.5. For the Whittaker model of σ we have

W((a b

0 d

)
,

(
a b

0 d

))
· f

((
y 0

0 1

)
,
(

y 0

0 1

))
= χσ (d) ·Wf

((
d−1ay 0

0 1

)
,
(

d−1ay 0

0 1

))
,

where χσ = χ1ψ1χ2ψ2 will be called the central character of σ .

Proof. This is straightforward from Lemma 4.2.17. Indeed, by definition, the left

hand side term is equal to

W
1,
(

a b

0 d

)
· f1
(
(

y 0

0 1

)
) ·W

2,
(

a b

0 d

)
· f2
(
(

y 0

0 1

)
)

and applying the lemma, this is equal to

Ψ(d−1by) ·Ψ(−d−1by) ·χ1ψ1(d) ·χ2ψ2(d) ·W1, f1(
(

d−1ay 0

0 1

)
) ·W2, f2(

(
d−1ay 0

0 1

)
).

Definition 4.4.6. The normalised Whittaker model for σ is defined by

W = (1− `−1
αβ
−1)−1(1− `−1

γδ
−1)−1 ·W

where α = χ1(`),β = ψ1(`),γ = χ2(`),δ = ψ2(`).

The definition and properties of spherical representations of H carry over to

representations of G, using the subgroup GL2(Z`)×GL2(Z`). In particular we

define the normalised spherical vector of σ to be

ϕ0 = ϕ1,0⊗ϕ2,0,

where ϕi,0 is the normalised spherical vector for IH(χi,ψi) as in Example 4.2.20.

Let then

W0 := Wϕ0.
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Theorem 4.4.7. Let, as above, α = χ1(`),β = ψ1(`),γ = χ2(`),δ = ψ2(`). Then

for any y ∈Q×` , let m := ord(y). We have

W0

((
y 0

0 1

)
,
(

y 0

0 1

))
=

0 if m < 0

`−m · αm+1−β m+1

α−β
· γm+1−δ m+1

γ−δ
if m≥ 0

Proof. This is a corollary of Theorem 4.2.23

4.4.2 Action of the Hecke algebra on Whittaker model

We will now recall the definition of the Hecke algebra acting on σ = IG(χ,ψ).

Definition 4.4.8. We denote by H (G) the Hecke algebra of locally constant com-

pactly supported C-valued functions on G. It is an algebra under convolution, de-

fined by

φ1 ?φ2(g) :=
∫

G
φ1(gh−1)φ2(h)dh,

for φ1,φ2 ∈H (G). Moreover we regard σ as left H (G)- module via

φ · f =
∫

G
φ(g)(g · f )dg.

Lemma 4.4.9. We have

g1 · (φ · (g2 · f )) = φ(g−1
1 (−)g−1

2 ) · f .

Example 4.4.10 (The operator U(`)). We define U(`) ∈H (G) to be, essentially

(U(`),U(`)), i.e. the usual U(`) operator on each of the GL2(Q`). More precisely

U(`) := 1
Vol(K′) ch(K′ ·

((
` 0

0 1

)
,
(

` 0

0 1

))
·K′)

for K′ = K′1×K′2 subgroup of GL2(Z`)×GL2(Z`), with K′1,K
′
2 ⊂{γ ∈K : γ ≡

(
∗ ∗

0 1

)
mod `} containing the subgroup of unipotent matrices. Proceeding as in Example
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4.3.3, we can rewrite

K′ ·
((

` 0

0 1

)
,
(

` 0

0 1

))
·K′ =

⊔
0≤u,v≤`−1

((
1 u

0 1

)
,
(

1 v

0 1

))
·
((

` 0

0 1

)
,
(

` 0

0 1

))
·K′

=
⊔

0≤u,v≤`−1

((
` u

0 1

)
,
(

` v

0 1

))
·K′.

From now on we take Ψ = e`, the standard additive character of Q`, i.e. the

one mapping `−n to exp(2πi/`n).

We describe how the action of the operator U(`) of Example 4.4.10 modifies

the Whittaker model.

Proposition 4.4.11. Let ϕ ∈ σ a spherical vector. Then for any y ∈Q×` , we have

WU(`)·ϕ

((
y 0

0 1

)
,
(

y 0

0 1

))
=


0 if |y| ≥ `

`2Wϕ

((
`y 0

0 1

)
,

(
`y 0

0 1

))
if |y|< `.

Proof. We prove the result for the Whittacker model W . By definition

WU(`)·ϕ

((
y 0

0 1

)
,
(

y 0

0 1

))
= µ

(((
y 0

0 1

)
,
(

y 0

0 1

))
· (U(`) ·ϕ)

)
= ∑

0≤u,v≤`−1
µ

(((
y 0

0 1

)(
` u

0 1

)
,
(

y 0

0 1

)(
` v

0 1

))
·ϕ
)
,

where in the second equality we used the decomposition of U(`) as in Example

4.4.10 and the fact that ϕ is K-invariant. Now we write

((
y 0

0 1

)(
` u

0 1

)
,
(

y 0

0 1

)(
` v

0 1

))
=
((

1 yu

0 1

)(
y` 0

0 1

)
,
(

1 yv

0 1

)(
y` 0

0 1

))
= myu,yv ·

((
y` 0

0 1

)
,
(

y` 0

0 1

))
.

So we find

WU(`)·ϕ

((
y 0

0 1

)
,
(

y 0

0 1

))
= ∑

0≤u,v≤`−1
Ψ(yu)Ψ(−yv)Wϕ

((
`y 0

0 1

)
,
(

`y 0

0 1

))
.

If |y`| > 1, applying Theorem 4.4.7, we find that the above quantity is zero. Simi-
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larly if |y`|= 1,i.e. e`(y) = ζ` := e2πi/`, the sum is equal to

c · ∑
0≤u,v≤`−1

e`(yu)e`(−yv) = c · ∑
0≤u,v≤`−1

ζ
u
` ζ
−v
` = 0,

where ϕ = c ·ϕ0. Finally, if |y`|< 1, e`(yu) = e`(−yv) = 1 for every u,v and hence

WU(`)·ϕ

((
y 0

0 1

)
,
(

y 0

0 1

))
= `2Wϕ

((
`y 0

0 1

)
,
(

`y 0

0 1

))
.

Hence the result.

4.4.3 Zeta integrals

We fix the quasicharacters χ1,ψ1,χ2,ψ2 such that χ1ψ
−1
1 6= | · |±1,χ2ψ

−1
2 6= | · |±1

and then fix the irreducible spherical principal series representation σ = IG(χ,ψ)

as above. We define the local L-factor of σ to be

L(σ ,s) := [(1−αγ`−s)(1−αδ`−s)(1−βγ`−s)(1−βδ`−s)]−1,

where, as above, α = χ1(`),β = ψ1(`),γ = χ2(`),δ = ψ2(`). Moreover if η is an

unramified character of Q×` , we define

L(σ⊗η ,s)= [(1−αγη(`)`−s)(1−αδη(`)`−s)(1−βγη(`)`−s)(1−βδη(`)`−s)]−1.

Definition 4.4.12. Let σ as above and η an unramified character of Q×` . For every

f ∈ σ , we define

Z(σ ,η , f ,s) := L(σ ⊗η ,s)−1
∫
Q×`
|y|s−1

η(y)W f

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y.

The following three useful lemmas are the analogues of Lemmas 4.3.6, 4.3.7,

4.3.8 of the previous section.

Lemma 4.4.13 (Zeta integral at the spherical vector). There exist r(σ ,η) ∈ R such

that for ever f ∈ σ and s ∈ C such that Re(s) > r(σ ,η), the above integral is

absolutely convergent and, as function of s, lies in C[`s, `−s]; in particular it has
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analytic continuation for all s ∈ C. Moreover, if ϕ0 is the normalised spherical

vector as above, we have

Z(σ ,η ,ϕ0,s) = L(η2
χσ ,2s)−1.

Proof. In order to prove the first statements, we reduce to compute the integral for

f = ϕ0, arguing as in the proof of Lemma 4.3.6. Applying Theorem 4.4.7, we find

∫
Q×`
|y|s−1

η(y)Wϕ0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y

= ∑
m≥0

(`s−1)−m`−m
η(`)m · α

m+1−β m+1

α−β
· γ

m+1−δ m+1

γ−δ

= ∑
m≥0

Xm · α
m+1−β m+1

α−β
· γ

m+1−δ m+1

γ−δ
,

where X = `−sη(`). We can manipulate the latter series and obtain

∑
m≥0

Xm · α
m+1−β m+1

α−β
· γ

m+1−δ m+1

γ−δ

=
1

(α−β )(γ−δ )

(
αγ

1−αγX
− αδ

1−αδX
− βγ

1−βγX
+

βδ

1−βδX

)
=

1
α−β

(
α +αβ 2γδX2−β −α2βγδX2

(1−αγX)(1−αδX)(1−βγX)(1−βδX)

)
=

1−αβγδX2

(1−αγX)(1−αδX)(1−βγX)(1−βδX)
.

This is a standard computation, see for example Jacquet’s refreshing exercise

[Jac72, Lemma 15.9.4]. We have conditions on the convergence giving the con-

dition Re(s)> r(σ ,η). Substituting X = `−sη(`), we find

∫
Q×`
|y|s−1

η(y)Wϕ0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y

= (1−χσ (`)η
2(`)`−2s)L(σ ⊗η ,s) = L(η2

χσ ,2s)−1L(σ ⊗η ,s).

Lemma 4.4.14 (Action of U(`) on the zeta integral). If ϕ0 is the normalised spher-
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ical vector as above, we have

Z(σ ,η ,U(`)ϕ0,s) = `s+1

η(`) [Z(σ ,η ,ϕ0,s)−L(σ ⊗η ,s)−1]

= `s+1

η(`) [L(η
2
χσ ,2s)−1−L(σ ⊗η ,s)−1]

Proof. First we apply Proposition 4.4.11 and find

Z(σ ,η ,U(`)ϕ0,s) = `2L(σ ⊗η ,s)−1
∫
|y|<`
|y|s−1

η(y)W0

((
`y 0

0 1

)
,
(

`y 0

0 1

))
d×y

= `s+1
η(`)−1L(σ ⊗η ,s)−1

∫
|y|<1
|y|s−1

η(y)W0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y,

where in the second equality we used the change of variables y `y. We then

rewrite the integral in the last term as

∫
Q×`
|y|s−1

η(y)W0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y−

∫
|y|≥1
|y|s−1

η(y)W0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y.

Then we apply Theorem 4.4.7 and obtain

∫
|y|≥1
|y|s−1

η(y)W0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y =

∫
Z×`

W0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y =

∫
Z×`

d×y = 1.

Putting everything together we find

Z(σ ,η ,U(`)ϕ0,s)

= `s+1
η(`)−1L(σ ⊗η ,s)−1

(∫
Q×`
|y|s−1

η(y)W0

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y−1

)
= `s+1

η(`)−1(Z(σ ,η ,ϕ0,s)−L(σ ⊗η ,s)−1).

Lemma 4.4.15 (Action of the Borel subgroup of GL2(Q`)). For any f ∈ σ , a,d ∈

Q×` , we have

Z(σ ,η ,
((

a ∗

0 d

)
,
(

a ∗

0 d

))
· f ,s) =

∣∣d
a

∣∣s−1
χσ (d)η(a−1d) ·Z(σ ,η , f ,s)
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Proof. We apply Lemma 4.4.5 and find

Z(σ ,η ,
((

a ∗

0 d

)
,
(

a ∗

0 d

))
· f ,s)

= χσ (d)L(σ ⊗η ,s)−1
∫
Q×`
|y|s−1

η(y)W f

((
d−1ay 0

0 1

)
,
(

d−1ay 0

0 1

))
d×y

= χσ (d)|d/a|s−1
η(a−1d)L(σ ⊗η ,s)−1

∫
Q×`
|y|s−1

η(y)W f

((
y 0

0 1

)
,
(

y 0

0 1

))
d×y

= χσ (d)|d/a|s−1
η(a−1d) ·Z(σ ,η , f ,s)

where in the second equality we used the change of variable y d−1ay.

4.5 Towards norm relations

Let G be the algebraic group overQ defined in the introduction, i.e. G = ResQF GL2,

for F real quadratic field. We will now prove some results using the zeta integrals of

the two previous sections. We will denote by σ an unramified irreducible principal

series representation of G(Q`), i.e. σ = IGL2(Q`)×GL2(Q`)(χ,ψ) if ` splits and σ =

IGL2(F̀ )(χ̃, ψ̃) for F̀ the unramified quadratic extension of Q` if ` is inert. We will

denote by χσ the following characters: χσ = χ1ψ1χ2ψ2 in the first case and χσ =

χ̃ψ̃ in the second one. By abuse of notation, we will often write H for H(Q`) =

GL2(Q`) and denote by L(As(σ),s) both the local L-factor we considered in §4.3.2

and §4.4.3, i.e.

L(As(σ),s) =

L(σ ,s) if ` splits and σ = IGL2(Q`)×GL2(Q`)(χ,ψ)

L(As(σ),s) if ` is inert and σ = IGL2(F)(χ̃, ψ̃).

We also let

αi = χi(`),βi = ψi(`) if ` splits,

α = χ̃(`),β = ψ̃(`) if ` splits,
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4.5.1 Multiplicity one

We will fix σ as above and another pair of unramified characters χ,ψ satisfying

χψ ·χσ = 1.

We will moreover assume that IH(χ,ψ) is either irreducible or it has an infinite

dimensional subrepresentation, i.e. χψ−1 6= | · |−1. We will be considering the

embedding

ι : H(Q`) ↪→ G(Q`).

In the split case ι(h) := (h,h)∈GL2(Q`)×GL2(Q`), while in the inert case ι(h) :=

h ∈ GL2(Q`)⊂ GL2(F).

Theorem 4.5.1 (Multiplicity one). Let σ ,χ,ψ as above. We assume that

(χ̃|Q×`
, ψ̃|Q×`

) 6= (χ,ψ),(ψ,χ) if ` is inert (?)

We then have

dim(HomH(IH(χ,ψ)⊗σ ,C))≤ 1.

Proof. If ` splits and IH(χ,ψ) is irreducible, i.e. χψ−1 6= | · |, this is Theorem 1.1

of [Pra90]. We apply it for V1 = IH(χ,ψ),V2 = IH(χ1,ψ1),V3 = IH(χ2,ψ2) (i.e.

V2⊗V3 = σ ). To deal with the case when χψ−1 = | · |, which was already treated in

[HS01], we will make use of the exact sequence (4.2.1), following, as the authors

of op. cit., the strategy of [Pra90, Proof of Theorem 1.2 Case 2]. Firstly, recall

that, by Theorem 4.2.9, the representation IH(χ,ψ) has an irreducible codimension

one subrepresentation, that we denote by π . The quotient is the one dimensional

representation of H given by a character γ , where χ = | · |1/2γ,ψ = | · |−1/2γ . We

find an exact sequence

0→ HomH(V2⊗ γ,V∨3 )→ HomH(V2⊗ IH(χ,ψ),V∨3 )→ HomH(V2⊗π,V∨3 ).

The last term in the sequence is at most one dimensional, again by Theorem 1.1 of
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[Pra90], applied for V1 = π . The term in the middle is the one we are interested in

and, by Theorem 4.2.9, the first one is zero if V2⊗ γ is not isomorphic to V∨3 . In

this case we obtain HomH(V2⊗IH(χ,ψ),V∨3 ) is one-dimensional, as desired. Let us

now treat the case V2⊗γ 'V∨3 . We write for simplicity V =V2 = IH(χ1,ψ1). Recall

the exact sequence (4.2.1). Let G = GL2(Q`)×GL2(Q`), J = B(Q`)× B(Q`),

H = GL2(Q`) and τ is given by

τ

((
a b

0 d

)
,
(

a′ b′

0 d′

))
= χ1(a)ψ1(d)χ(a′)ψ(d′).

In this case H1 = B(Q`) and H2 = T = {
(

λ1 0

0 λ2

)
,λi ∈Q×` } (the maximal split torus).

To show that, one can take ε = (Id,
(

0 1

−1 0

)
). Using the fact that T is unimodular and

δB×B

((
a b

0 d

)
,
(

a′ b′

0 d′

))
= | ad ||

a′
d′ |,

δB

((
a b

0 d

))
= | ad |,

δB×B

(
ε(
(

λ1 0

0 λ2

)
,
(

λ1 0

0 λ2

)
)ε−1

)
= 1,

we find the exact sequence of GL2(Q`)-modules

0→ c- IndGL2(Q`)
H2

τ̃ → (V ⊗ IH(χ,ψ))|H → IH(χ1γ| · |,ψ1γ| · |−1)→ 0,

where τ̃(
(

λ1 0

0 λ2

)
) = χ1ψ(λ1)ψ1χ(λ2). Applying HomH(−,V∨3 ) to the above exact

sequence, we find

0→HomH(IH(χ1γ| · |,ψ1γ| · |−1),V∨3 )→ HomH(V ⊗ IH(χ,ψ),V∨3 )

→ HomH(c- IndGL2(Q`)
H2

τ̃,V∨3 )→ Ext1H(IH(χ1γ| · |,ψ1γ| · |−1),V∨3 ))→ . . .

Since V∨3 'V ⊗γ = IH(χ1γ,ψ1γ), we have, from the second part of Theorem 4.2.9,

that

HomH(IH(χ1γ| · |,ψ1γ| · |−1),V∨3 ) 6= 0,

if and only if χ1| · | = χ1,ψ1| · |−1 = ψ1 or χ1| · | = ψ1,ψ1| · |−1 = χ1. The only
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possible case is the latter and it would imply χ1ψ
−1
1 = | · |−1, contradicting the

irreducibility of V2. Hence, the first space in the sequence is zero which implies, by

[Pra90, Corollary 5.9], that also the Ext1 is zero. We hence find

HomH(σ|H ,(IH(χ,ψ))∨)' HomH(c- IndGL2(Q`)
H2

τ̃,V∨3 )' HomH2(τ̃,((V3)|H2)
∨).

By assumption we have χ
−1
2 ψ

−1
2 = χ1ψψ1χ , hence the central characters of τ̃ and

V∨3 agree. We can apply [Wal85, Lemma 9], saying that this space is at most one

dimensional.

We now prove the inert case, applying again the exact sequence (4.2.1). Let

G = GL2(F̀ ), where F̀ is the quadratic unramified extension of Q` and choose a

Q` basis {1,α} such that α2 ∈Q`. Then let J = B(F̀ ), H = GL2(Q`) and τ be the

smooth representation of J given by

τ

((
a b

0 d

))
= χ̃(a)ψ̃(d).

The two orbits of the action of GL2(Q`) on GL2(F̀ )/B(F̀ )' P1
F̀ are the GL2(Q`)

orbit of (1 : 0) (essentially P1
Q`

) and the GL2(Q`) orbit of (1 : α), which is given by

(a : b) ∈ P1
F̀ such that a/b 6∈ Q`,ab 6= 0. Writing a = x0 + y0α,b = x1 + y1α , we

have (
y1 −y0

−x1 x0

)
· (a : b) = (x0y1− x1y0 : α(x0y1− x1y0)) = (1 : α)

and x0y1− x1y0 6= 0, otherwise if y1 6= 0, a/b = y0/y1 ∈Q`. If y1 = 0, then x1 6= 0

and y0 6= 0. We find that the stabiliser of the closed orbit is H1 = B(Q`) and, taking

ε =
(

1 0

α 1

)
, the stabiliser of the open one is H2 = {

(
a b

α2b a

)
,a,b ∈Q2

`− (0,0)}. To see

that H2 can be written of this form, we compute the conjugate of B(F̀ ) by ε .

(
1 0

α 1

)(
a b

0 d

)(
1 0

−α 1

)
=
(

a−bα b

aα−bα2−dα bα−d

)
.

Requiring that such matrices lie in GL2(Q`) implies that b ∈ Q` and a = a1 +

bα,d = a1 − bα , for a1 ∈ Q`. The group H2 is a (non-split) maximal torus in
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GL2(Q`). This is again unimodular and

δB(F̀ )(ε
(

a b

α2b a

)
ε
−1) = δB(F̀ )(

(
a−bα b

0 a+bα

)
) = |a−bα||a+bα|−1 = 1.

We find the exact sequence of GL2(Q`)-modules

0→ c- IndGL2(Q`)
H2

τ̃ → σ|H → IH(χ̃|Q×`
, ψ̃|Q×`

)→ 0,

where τ̃(
(

a b

α2b a

)
) = χ̃(a−bt) · ψ̃(a+bt).

Let V = IH(χ,ψ), applying HomH(−,V∨) to the above exact sequence we find

0→HomH(IH(χ̃|Q×`
, ψ̃|Q×`

),V∨)→ HomH(σ|H ,V
∨)

→ HomH(c- IndGL2(Q`)
H2

τ̃,V∨)→ Ext1H(IH(χ̃|Q×`
, ψ̃|Q×`

),V∨))→ . . .

Since the smooth dual of V is V∨ = IH(χ
−1,ψ−1), we have, arguing as above, that

HomH(IH(χ̃|Q×`
, ψ̃|Q×`

),V∨) 6= 0,

if and only if χ̃|Q×`
= χ−1, ψ̃|Q×`

= ψ−1 or χ̃|Q×`
= ψ−1, ψ̃|Q×`

= χ−1. Assumption

(?) implies that this is not the case, hence the above space is zero and so is Ext1. We

hence find

HomH(σ|H ,V
∨)' HomH(c- IndGL2(Q`)

H2
τ̃,V∨)' HomH2(τ̃,(V|H2)

∨).

By assumption we have χ−1ψ−1 = (χ̃ · ψ̃)|Q×`
, and we can again apply [Wal85,

Lemma 9], saying that this space is at most one dimensional.

4.5.2 A basis for HomH(IH(χ,ψ)⊗σ ,C)

Using the zeta integral defined above, we now want to construct an explicit nonzero

element of HomH(IH(χ,ψ)⊗σ ,C), which by the above theorem will be a basis.

Definition 4.5.2. Let η = ψ , for ψ as above. For any ϕ ∈ σ ,s ∈ C, we define a
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function zs,ϕ on H(Q`) by

zs,ϕ(h) := Z(σ ,η , ι(h) ·ϕ,s+ 1
2),

for any h ∈ H(Q`).

We now let, for s ∈ C, ψs := ψ| · |s,χs := χ| · |−s.

Proposition 4.5.3. The above function defines an element zϕ ∈ IH(ψ
−1
s ,χ−1

s ) for

every ϕ ∈ σ . Moreover

zs,ϕ0(1) = L(ψ

χ
,2s+1)−1,

zs,U(`)ϕ0(1) =
`s+3/2

η(`) [L(
ψ

χ
,2s+1)−1−L(As(σ ⊗η),s+ 1

2)
−1]

Proof. The first assertion is a straightforward corollary of Lemma 4.3.8 and Lemma

4.4.15. Indeed

zϕ(
(

a ∗

0 d

)
·h) = Z(σ ,η , ι(

(
a ∗

0 d

)
)ι(h) ·ϕ,s+ 1

2) =
∣∣ a

d

∣∣s+1/2
χσ (d)η(a−1d) ·Z(σ ,η , ι(h) ·ϕ,s+ 1

2)

=
∣∣ a

d

∣∣1/2
ψ
−1(a)|a|sχ−1(d)|d|−s · zϕ(h),

using χσ = ψ−1χ−1 and η = ψ . The formula for the value at ϕ0 (U(`)ϕ0 respec-

tively) follows from Lemma 4.3.6 and Lemma 4.4.13 (Lemma 4.3.7 and Lemma

4.4.14 respectively).

By definition, the map

zs : σ → IH(ψ
−1
s ,χ−1

s )

ϕ 7→ zs,ϕ

is H-equivariant. Moreover it follows from Proposition 4.5.3 that z0 is different

from zero if L(ψ

χ
,2s+1)−1 and L(As(σ ⊗η),s+ 1

2)
−1 do not both vanish at s = 0.

Notice that if ` is inert then L(ψ

χ
,2s+1)−1 divides L(As(σ ⊗η),s+ 1

2)
−1.

Lemma 4.5.4. If ` splits, assume that L(ψ

χ
,2s+ 1)−1 and L(As(σ ⊗η),s+ 1

2)
−1

do not both vanish at s = 0. If ` is inert, assume that L(ψ

χ
,2s + 1)−1 and
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L(ψ

χ
,2s+ 1)L(As(σ ⊗η),s+ 1

2)
−1 do not both vanish at s = 0. Then the image

of the homomorphism z0 is contained in the unique irreducible subrepresentation of

IH(ψ
−1,χ−1).

Proof. If L(ψ

χ
,2s+1)−1 does not vanish, then IH(ψ

−1,χ−1) is irreducible and there

is nothing to prove. Otherwise, χψ−1 = | · | and IH(ψ
−1,χ−1) has a unique infinite

dimensional irreducible subrepresentation St(γ) and one dimensional quotient with

action given by γ(det). In the split case, we claim that if L(As(σ ⊗η),s+ 1
2)
−1

does not vanish at s = 0, the space HomH(σ|H ,γ(det)) is zero, and, consequently,

the image of z0 is contained in St(γ). The proof uses the same methods as the one of

Theorem 4.5.1. With the same notation, in the split case one finds an exact sequence

0→HomH(IH(χ1χ2| · |1/2,ψ1ψ2| · |−1/2),γ(det))→ HomH(σ|H ,γ(det))

→ HomH(c- IndGL2(Q`)
H2

τ̃,γ(det))→ Ext1H(IH(χ1χ2| · |1/2,ψ1ψ2| · |−1/2),γ(det))→ . . .

Since L(As(σ⊗ψ), 1
2)
−1 is not zero, then none of the characters χ1ψ2,χ1χ2,ψ1χ2,ψ1ψ2

is equal to ψ−1| · |−1/2 = γ . On the other hand, applying Frobenius reciprocity one

finds that the first space in the sequence is non zero if and only if χ1χ2 = γ and

ψ1ψ2 = γ , while the third one is non zero if and only if χ1ψ2 = γ and ψ1χ2 = γ .

This proves the claim.

Similarly in the inert case, we have

0→HomH(IH(χ̃|Q×`
, ψ̃|Q×`

),γ(det))→ HomH(σ|H ,γ(det))

→ HomH(c- IndGL2(Q`)
H2

τ̃,γ(det))→ Ext1H(IH(χ̃|Q×`
, ψ̃|Q×`

),γ(det))→ . . .

The assumption L(ψ

χ
,2s + 1)L(As(σ ⊗ η),s + 1

2)
−1 = (1− χ̃ψ(`)`−s−1/2)(1−

ψ̃ψ(`)`−s−1/2) 6= 0 at s = 0 and Frobenius reciprocity again imply that the first

space in the sequence is zero. The third space is at most one dimensional. If it is

zero, then we conclude as above. Otherwise, we find that also HomH(σ|H ,γ(det))

is at most one dimensional. Consider the exact sequence

0→ HomH(σ|H ,St(γ))→ HomH(σ|H , IH(ψ
−1,χ−1))→ HomH(σ|H ,γ(det)).
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We deduce that if the last map is not zero, which in particular would imply that

the statement of the Lemma is false, then HomH(σ|H ,St(γ)) = 0. This yields a

contradiction. Indeed, consider the sequence

0→HomH(IH(χ̃|Q×`
, ψ̃|Q×`

),St(γ))→ HomH(σ|H ,St(γ))

→ HomH(c- IndGL2(Q`)
H2

τ̃,St(γ))→ Ext1H(IH(χ̃|Q×`
, ψ̃|Q×`

),St(γ))→ . . .

By [Wal85, Lemme 9] the third space has dimension one and, as in the proof of

4.5.1, we have that the first and fourth terms are zero.

Unlike in the GSp4 case where temperedness considerations allow to assume

the non-vanishing of both the abelian L-factor and the one where the principal series

appears, in our setting it can actually happen that they both are zero, e.g. it is

possible that at some split primes σ = IH(χ1,ψ1)⊗ IH(γχ
−1
1 ,γψ

−1
1 ). The following

lemma shows that in this case z0 is identically zero.

Lemma 4.5.5. If the assumptions of the previous lemma are not satisfied, then z0 is

identically zero.

Proof. This follows from the explicit description of functions in the Kirillov model

of principal series representations of GL2(Q`) as recalled for example in [Jac72,

Lemma 14.3]. In the split case, the functions y 7→Wi,ϕ(
(

y 0

0 1

)
) are indeed in the

Kirillov model of IH(χi,ψi). By definition

L(As(σ ⊗ψ),s+1/2) = L(χ1χ2γ
−1,s)L(χ1ψ2γ

−1,s)L(ψ1χ2γ
−1,s)L(ψ1ψ2γ

−1,s)

Firstly we assume that the order of vanishing of L(As(σ ⊗ψ),s+1/2)−1 is 2 and,

without loss of generality, we can assume χ1χ2 = ψ1ψ2 = γ , where ψ−1 = | · |1/2γ .

Since the order is 2, we have χi 6= ψi, and Wi,ϕ(
(

y 0

0 1

)
) can be written as

fi(y)χi(y)|y|1/2 +gi(y)ψi(y)|y|1/2,

for some fi,gi ∈S (Q`). Hence the function Z(σ ,ψ,ϕ1⊗ϕ2,s+ 1/2) is equal to
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L(As(σ ⊗ψ),s+1/2)−1 multiplied by the integral

∫
Q×`
|y|s−1

γ
−1(y)( f1(y)χ1(y)|y|1/2 +g1(y)ψ1(y)|y|1/2)

· ( f2(y)χ2(y)|y|1/2 +g2(y)ψ2(y)|y|1/2)d×y

= P1(s)L(1,s)+P2(s)L(χ1ψ2γ
−1,s)+P3(s)L(ψ1χ2γ

−1,s),

where Pi(s) are polynomials in `−s, `s. The equality follows from the description of

the L-factor L(µ,s) for any quasicharacter of Q×` (see [Jac72], the discussion after

Lemma 14.3). Since in our situation we have

L(As(σ ⊗ψ),s+1/2)−1 = L(1,s)−2L(χ1ψ2γ
−1,s)−1L(ψ1χ2γ

−1,s)−1,

the result follows. If the order of vanishing of L(As(σ ⊗ψ),s+ 1/2)−1 is 4, we

have χ1 = ψ1 and χ2 = ψ2 = γχ
−1
1 . In this case

∫
Q×`
|y|s−1

γ
−1(y)( f1(y)χ1(y)|y|1/2 +g1(y)χ1(y)v(y)|y|1/2)

· ( f2(y)γχ
−1
1 (y)|y|1/2 +g2(y)γχ

−1
1 (y)v(y)|y|1/2)d×y

= P1(s)L(1,s)+P2(s)L(1,s)2 +P3(s)L(1,s)3.

Here v is the valuation of Q` and the equality follows from what said above and

[Jac72, (14.2.1)] in the case where v or v2 appears in the integral. Being L(As(σ ⊗

ψ),s+1/2)−1 equal to L(1,s)−4, again the result follows.

Similarly, in the inert case we have that the Kirillov function y 7→Wϕ(
(

y 0

0 1

)
)

can be written as

|y|1/2
F̀ ( f (y)γ(y)+g(y)γ(y)v(y)).

for f ,g ∈S (F̀ ) and | · |F̀ is equal to | · |2 when restricted toQ`. Indeed the fact that

both the L factor vanish implies that χ̃ = ψ̃ = γ , where ψ−1 = | · |1/2γ . Hence the
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integral in the definition of zs,ϕ is

∫
Q×`
|y|sγ−1(y)( f (y)γ(y)+g(y)γ(y)v(y))d×y = P1(s)L(1,s)+P2(s)L(1,s)2.

In this case L(As(σ ⊗ψ),s+1/2) = L(1,s)−4 and the result follows.

We recall then the intertwining operator defined thanks to Proposition 4.2.8

and the pairing of definition 4.2.10

M : IH(χs,ψs)→ IH(ψs,χs) and 〈−,−〉 : IH(ψs,χs)× IH(ψ
−1
s ,χ−1

s )→ C.

Definition/Proposition 4.5.6. For every f ∈ IH(χ,ψ),ϕ ∈ σ , we let

zχ,ψ( f ⊗ϕ) := lim
s→0

L(ψ

χ
,2s+1)〈M fs,zs,ϕ〉,

where fs ∈ IH(χs,ψs) is any polynomial section passing through f .2 This gives a

well defined element zχ,ψ ∈ HomH(IH(χ,ψ)⊗σ ,C) which is not zero.

Proof. First of all one notices that 〈M f ,zs,ϕ〉 = 〈 fs,Mzs,ϕ〉. If χ,ψ,σ are as in

Lemma 4.5.5, then zs vanishes for s→ 0. If χ,ψ,σ are as in Lemma 4.5.4, then

zs is an element of the non-generic irreducible subrepresentation of IH(ψ
−1,χ−1),

which is the kernel of the M operator if L(ψ

χ
,2s+ 1) has a pole at s = 0. Hence

in both cases the limit is well defined and depends only on f . Moreover, the first

formula of Proposition 4.5.3 implies that zχ,ψ( f ⊗ϕ0) 6= 0, for some nice choice of

f , e.g. for f = Fφ0 one can see this from the computation in the proof of Theorem

4.5.8, where we show

zχ,ψ(Fφ0⊗ϕ0) = L(χψ
−1,1)−1 Vol(H(Z`)),

which is different from zero since we assumed χψ−1 6= | · |−1.

2Here by polynomial section passing through f we mean a function on H×C, sending (g,s) 7→
fs(g) such that g 7→ fs(g) is in IH (χs,ψs) for each s ∈C, s 7→ fs(g) lies in C [`s, `−s] for every g and
f0 = f . One constructs it as in (4.2.2).
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The following corollary is then a straightforward consequence of the above

proposition and of multiplicity one (Theorem 4.5.1).

Corollary 4.5.7. Take σ ,ψ,χ as above and assume that condition (?) holds and

that |χ(`)|C 6= |ψ(`)|C. Then zχ,ψ is a basis for HomH(IH(χ,ψ)⊗σ ,C).

Using this specific element of HomH(IH(χ,ψ)⊗σ ,C), we now prove a theo-

rem that will play a key role in the proof of norm relations. Having fixed χ,ψ , for

every φ ∈S (Q2
` ,C) we let, as in Proposition 4.2.26,

Fφ := Fφ ,χ,ψ = f
φ̂ ,χ,ψ ∈ IH(χ,ψ).

We also recall the special elements φ0,φ1 ∈S (Q2
` ,C) as in Definition 4.2.28.

Theorem 4.5.8. With notation as above, we assume that (?) holds and that the

characters χ,ψ are as follows

• χ = | · |1/2+k · τ , for τ a finite order unramified character and k ≥ 0 integers;

• ψ = | · |−1/2.

Then for any z ∈ HomH(IH(χ,ψ)⊗σ ,C) we have

(i) z(Fφ1⊗ϕ0) =
1

(`+1) ·
(

1− `k

τ(`)

)
· z(Fφ0⊗ϕ0);

(ii) z(Fφ1⊗U(`) ·ϕ0) =
`

(`+1) ·
[(

1− `k

τ(`)

)
−L(As(σ),0)−1

]
· z(Fφ0⊗ϕ0),

where in (ii) the Hecke operator U(`) is the one of Examples 4.3.3 and 4.4.10, in

the inert and split prime case respectively.

Proof. We will prove both the statements for the specific function zχ,ψ , which is a

basis of HomH(IH(χ,ψ)⊗σ ,C).

First we notice that Fφt is the value at s = 0 of the Siegel section f
φ̂t ,χs,ψs

. We

apply Proposition 4.2.27 and find

M( f
φ̂t ,χs,ψs

) = L(χψ
−1,1−2s)−1 fφt ,ψs,χs.
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We then apply the definition of the pairing 〈−,−〉 and get

〈M( f
φ̂t ,χs,ψs

),zϕ0〉= L(χψ
−1,1−2s)−1 ·

∫
H(Z`)

fφt ,ψs,χs(h)zϕ0(h)dh

= L(χψ
−1,1−2s)−1 fφt ,ψs,χs(1) ·

∫
K0(`t)

zs,ϕ0(h)dh.

For the last equality we used that fφt ,ψs,χs restricted to H(Z`) is a scalar multiple of

ch(K0(`
t)). This follows from the fact that, by Lemma 4.2.29, fφt ,ψs,χs restricted to

H(Z`) is supported on K0(`
t) and φt is invariant by the action of K0(`

t). Recall that

g ·ϕ0 = ϕ0 for any g ∈ G(Z`). Hence zs,ϕ0(h) = zs,ϕ0(1) for any h ∈ H(Z`) and we

can continue the chain of equality writing

z(Fφt ⊗ϕ0) = L(χψ
−1,1)−1 fφt ,ψ,χ(1)Vol(K0(`

t)) · lim
s→0

(
L(ψ

χ
,1+2s)zs,ϕ0(1)

)
=

L(χψ−1,1)−1L(ψχ−1,1)−1 Vol(K0(`)) if t = 1

L(χψ−1,1)−1 Vol(H(Z`)) if t = 0,

where we applied Lemma 4.2.29 for the value fφt ,ψ,χ(1) and the first formula

of Proposition 4.5.3 to show that the limiting value is exactly equal to 1. Since
Vol(K0(`))
Vol(H(Z`))

= [H(Z`) : K0(`)]
−1 = 1

`+1 and

L(ψχ
−1,1) = L(| · |−1−k

τ
−1,1) = (1− `k

τ(`))
−1

we obtain (i). We proceed similarly to get (ii), using in addition the second formula

of Proposition 4.5.3. We find

zχ,ψ(Fφ1,U(`)ϕ0) = Vol(K0(`))L(χψ
−1,1)−1L(ψχ

−1,1)−1 · lim
s→0

L(ψ

χ
,1+2s)zU(`)ϕ0(1)

= `3/2

η(`) Vol(K0(`))L(χψ
−1,1)−1 lim

s→0
L(ψ

χ
,1+2s)−1L(ψ

χ
,1+2s)

·
(
zϕ0(1)−L(As(σ ⊗η),s+ 1

2)
−1)

= `Vol(K0(`))L(χψ
−1,1)−1

[
L(ψ

χ
,1)−1−L(As(σ ⊗η), 1

2)
−1
]
.

Using the formula proved above for the value z(Fφ0 ⊗ ϕ0) and noticing that
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L(As(σ ⊗η), 1
2) = L(As(σ ⊗| · |−1/2), 1

2) = L(As(σ),0), we obtain (ii).

Remark 4.5.9. We emphasise that, in order to prove this theorem for any z ∈

HomH(IH(χ,ψ)⊗σ ,C), we used

• σ is a principal series representation for G with central character such that

χψ ·χσ = 1 and (?) holds;

• χ,ψ are in the form χ = | · |1/2+k · τ , ψ = | · |−1/2;

• dim(HomH(IH(χ,ψ)⊗σ ,C)) = 1.

4.5.3 From HomH(τ⊗σ ,C) to X(τ,σ∨)

Let τ,σ be smooth representations of H(Q`) and G(Q`) respectively. We will now

establish a bijection from the space HomH(τ ⊗ σ ,C) and the space X(τ,σ∨) of

linear maps Z : τ ⊗CH (G)→ σ∨ satisfying certain properties. For the specific

choice τ = S (Q2
` ,C), we will prove results that are essential in the proof of the

norm relations (in motivic cohomology). In particular for σ an unramified principal

series representation as above, we will use the above mentioned bijection and will

be able to combine these results with Theorem 4.5.8, obtaining a result that is a key

point in the proof of tame norm relations (in Galois cohomology).

Definition 4.5.10. Let τ,σ be smooth representations of H(Q`) and G(Q`) respec-

tively. We define X(τ,σ∨) to be the space of linear maps Z : τ ⊗CH (G)→ σ∨,

which are H(Q`)×G(Q`)-equivariant, with the actions defined as follows:

• H(Q`) acts trivially on σ∨ and on τ⊗H (G) via

h · (v⊗ξ ) = (h · v)⊗ξ (h−1(−)).

• G(Q`) acts naturally on σ∨ (which is a G(Q`)-representation) and on τ ⊗

H (G) via

g · (v⊗ξ ) = v⊗ξ ((−)g).

We now state explicitly the bijection we were mentioning above.
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Proposition 4.5.11. There is a canonical bijection between HomH(τ ⊗σ ,C) and

X(τ,σ∨) characterised as follows

HomH(τ⊗σ ,C)−→ X(τ,σ∨)

z 7−→ Z,

where Z( f ⊗ξ )(F) = z( f ⊗ (ξ ·F)), for every f ∈ τ,ξ ∈H (G) and F ∈ σ .

Proof. We start by rewriting Lemma 4.4.9 as

(1) g · (ξ ·F) = ξ (g−1(−)) ·F ;

(2) ξ · (g ·F) = ξ ((−)g−1) ·F ;

for every ξ ∈H (G),F ∈ σ ,g ∈ G(Q`).

Firstly we check that Z is G(Q`)-equivariant. By definition of the action on the

smooth dual of σ , for every g ∈ G(Q`) and Φ ∈ σ∨, g ·Φ(−) = Φ(g−1 · (−)). We

have

[g ·Z( f ⊗ξ )](F) = Z( f ⊗ξ )(g−1 ·F) = z( f ⊗ (ξ · (g−1 ·F)))
(2)
= z( f ⊗ (ξ ((−)g) ·F))

= Z( f ⊗ (ξ ((−)g))(F) = Z(g · ( f ⊗ξ ))(F).

Then we check that Z is H(Q`)-equivariant, recalling that H(Q`) acts trivially

on σ∨. For h ∈ H(Q`) we have

Z(h · ( f ⊗ξ ))(F) = Z((h · f )⊗ξ (h−1(−)))(F) = z((h · f )⊗ (ξ (h−1(−)) ·F))

(1)
= z((h · f )⊗ (h · (ξ ·F)))

z∈HomH= z( f ⊗ξ ·F) = Z( f ⊗ξ )(F).

Hence Z ∈ X(τ,σ∨).

The fact that this defines a bijection follows from the isomorphism

HomG(c- IndG
H(τ),σ

∨)' HomH(τ⊗σ ,C),

which is essentially given by Frobenius reciprocity (see [LSZ20a, Proposition
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3.8.1]). Here we denoted by c- IndG
H(τ) the compact induction. Using τ⊗H (G) =

c- IndG
H τ , one finds

HomG(c- IndG
H(τ),σ

∨)' X(τ,σ∨).

Definition 4.5.12. Let R ∈H (G). we define R′ ∈H (G) by R′(g) := R(g−1).

Remark 4.5.13. It is an easy computation to check that for every Φ ∈ σ∨,F ∈ σ ,

we have

Φ(R ·F) = R′ ·Φ(F).

Indeed one one side we have, Φ(R ·F) = Φ(
∫

G R(g)g ·Fdg) =
∫

G R(g)Φ(g ·F)dg,

using linearity of Φ. On the other we find R′ ·Φ(F) =
∫

G R(g−1)gΦ(F)dg =∫
G R(g−1)Φ(g−1 ·F)dg. This integrals are equal since G is unimodular.

Corollary 4.5.14. Let z↔ Z as in the above Proposition. Let U1≤U0 be subgroups

of G, f0, f1 ∈ τ and g0,g1 ∈ G such that

z( f1,g1 ·F) = z( f0,g0 · (R ·F))

for some R ∈H (U0\G/U0) and for every F ∈ σU0 . Then the elements Zi := Z( fi⊗

ch(giUi)) ∈ (σ∨)Ui satisfy

∑
u∈U0/U1

u ·Z1 = R′ ·Z0 ∈ (σ∨)U0.

Proof. It is clear by the definition of the action of G that Zi ∈ (σ∨)Ui , moreover

summing over quotient representatives gives also ∑u∈U0/U1 u ·Z1 ∈ (σ∨)U0. Writing

(σ∨)U0 = (σU0)∨, we are then left to check that both the L.H.S. and the R.H.S. take

the same value at every F ∈ σU0 . Applying the Lemma above, we find

R′ ·Z0(F) = Z0(R ·F) = Z( f0⊗ ch(g0U0))(R ·F)

= z( f0⊗ (ch(g0U0)R) ·F) = Vol(U0)z( f1,g1 ·F).
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In the last equality we used the assumption z( f1,g1 ·F) = z( f0,g0 · (R ·F)) together

with the fact that g0 · (R ·F) = R(g−1
0 (−)) ·F and

ch(g0U0)?R(g)=
∫

G
ch(g0U0)(gh)R(h−1)dh=

∫
g−1g0U0

R(h−1)dh=Vol(U0)R(g−1
0 g),

where we obtained the last equality from the fact that R is in H (U0\G/U0). More-

over for every u ∈U0/U1 we have

u ·Z1(F)= u ·Z( f1⊗ch(g1U1))(F)=Z( f1⊗ch(g1U1))(u−1F)= z( f1⊗ch(g1U1)((−)u)·F).

We also find that

∑
u∈U0/U1

ch(g1U1)((−)u) ·F = ∑
u

∫
G

ch(g1U1)(gu) g ·Fdg = ∑
u

∫
g1U1

gu−1 ·Fdg

= ∑
u

∫
U1

g1 ·Fdg = Vol(U1)[U0 : U1] g1 ·F = Vol(U0) g1 ·F,

where we used the fact that F is invariant by U0 ≥ U1. The result follows using

linearity and the above expression for u ·Z1(F).

We now work in the setting where:

• We take τ = S (Q2
` ,C);

• We replace σ∨ by an arbitrary smooth complex representation W of G(Q`).

We consider X(W ) to be, similarly as above, the space of functions

Z : S (Q2
` ,C)⊗H (G)→W

satisfying the H(Q`)×G(Q`) equivariance property with actions defined as above.

Lemma 4.5.15. Let ξ ∈ H (G) be invariant by left translation of the principal

congruence subgroup of level `T in H(Z`) for some T ≥ 0. Then for any Z∈ X(W )

the expression
1

Vol(KH,1(`t))
Z(φ1,t⊗ξ )
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is independent of t ≥ T , where KH,1(`
t),φ1,t are as in Definition 4.2.30.

Proof. This is the analogous of [LSZ20a, Lemma 3.9.2]. The proof carries over,

we sketch it for the sake of completeness. For any t ≥ T we fix J a set of coset

representatives for the quotient KH,1(`
T )/KH,1(`

t) such that J is contained in the

principal congruence subgroup of level `T . We can write φ1,T = ∑k∈J k ·φ1,t . From

that, using H(Q`)-equivariance of Z and the fact that ξ is invariant by the action of

the principal congruence subgroup of H of level `T , we obtain

Z(φ1,T ⊗ξ ) = ∑
k∈J

Z(k · (φ1,t⊗ (k−1 ·ξ )) = Vol(KH,1(`
T ))

Vol(KH,1(`t)) Z(φ1,t⊗ξ ).

Definition 4.5.16. We define Z(φ1,∞⊗ ξ ) to be the limiting value defined by the

above lemma.

We now define a precise choice for ξ , that will be used for the definition of the

Euler system classes.

Definition 4.5.17. Let m≥ 0 integer and a ∈ Z×` , we define η
(a)
m ∈ G(Q`) by

η
(a)
m :=


((

1 0

0 1

)
,

(
1 a

`m

0 1

))
∈ GL2(Q`)×GL2(Q`) if ` splits(

1 δ · a
`m

0 1

)
∈ GL2(F̀ ) if ` is inert.

In the second case we fix δ ∈ OF̀ such that F̀ = Q`⊕Q`(δ ) as in §4.3. We will

write ηm = η
(1)
m .

For n≥max(m,1) we also let K(a)
m,n be the subgroup given by


{(g1,g2) ∈ GL2(Z`)×GL2(Z`) : g1,g2 ≡

(
∗ ∗

0 1

)
) mod `n,detg1,detg2 ≡ a mod `m}

{g ∈ G(OF̀ ) : g≡
(
∗ ∗

0 1

)
mod `n,detg≡ a mod `m}

in the split and inert case respectively. We denote by Km,n the subgroup K(1)
m,n.
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Remark 4.5.18 (On the choice of ηm). The choice of these elements in G(Q`)

corresponds to the choice of the “embedding twist” in the original definition of the

Asai-Flach classes of [LLZ18] (and of Beilinson-Flach classes in [LLZ14]). The

choice of the matrices is given by something of the form ι(
(

1 `−m

0 1

)
) “twisted” by

some upper triangular matrix of G(Z`) not coming from H(Z`), i.e. something of

the form ((
1 a1

0 1

)
,
(

1 a2

0 1

))
and

(
1 a

0 1

)
respectively

for a1,a2 ∈ Z`/`Z`,a1 6= a2 and a ∈ OF̀ /(`OF̀ +Z`) respectively.

Recall then the Hecke operator R =U(`) in Example 4.3.3 and 4.4.10. Taking

K′ = Km,n we have a decomposition as left cosets as in the mentioned examples.

We now denote by U ′(`) the element R′ (see definition 4.5.12) of the Hecke algebra

invariant (on the left and on the right) by Km,n, explicitly it is

U ′(`) =
1

Vol(Km,n)
ch(Km,nι(

(
`−1 0

0 1

)
)Km,n) ∈H (Km,n\G/Km,n).

Proposition 4.5.19. For any Z ∈ X(W ), we have

Z(φ1,∞⊗ ch(ηm+1Km,n)) =


1
`U
′(`)

1
`−1(U

′(`)−1)
·Z(φ1,∞⊗ ch(ηmKm,n))

if m≥ 1

if m = 0.

Proof. First of all we notice that (similarly as in Remark 4.5.13) we have U ′(`) ·

Z(φ1,∞⊗ ch(ηmKm,n)) = Z(φ1,∞⊗ (ch(ηmKm,n) ?U(`))). We moreover apply the

decomposition of Examples 4.3.3 and 4.4.10 to find

U ′(`)·Z(φ1,∞⊗ch(ηmKm,n))=
(S) ∑0≤u,v≤`−1Z

(
φ1,∞⊗ ch

(
ηm

((
` u

0 1

)
,
(

` v

0 1

))
Km,n

))
(I) ∑0≤i, j≤`−1Z

(
φ1,∞⊗ ch

(
ηm

(
` i+α j

0 1

)
Km,n

))
,

where (S) denotes the split case and (I) the inert one. In both cases we are going to

rewrite the Hecke algebra element using the invariance of Km,n by Z` translation.
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(S) In the first case

ηm ·
((

` u

0 1

)
,
(

` v

0 1

))
=
((

1 u

0 1

)
,
(

1 u

0 1

))
·
((

` 0

0 1

)
,
(

` (v−u)+ `−m

0 1

))
= ι(

(
1 u

0 1

)(
` 0

0 1

)
) ·η(1+`m(v−u))

m+1 .

In this case we denote by xu,v the integer v−u.

(I) Similarly in the second case, we write

ηm

(
` i+δ j

0 1

)
=
(

1 i

0 1

)(
` δ ( j+ `−m)

0 1

)
= ι(

(
1 i

0 1

)(
` 0

0 1

)
) ·η(1+`m j)

m+1 .

In this case, we write xi, j = j for all 0≤ i≤ `−1.

Now we write the above sum (both in the (S) and (I) case) as

∑
0≤u,v≤`−1

Z
(

φ1,∞⊗
(

1 u

0 1

)(
` 0

0 1

)
· ch(η(1+`mxu,v)

m+1 Km,n)
)

= 1
Vol(KH,1(`n)) ∑

0≤u,v≤`−1
Z
(

φ1,n⊗
(

1 u

0 1

)(
` 0

0 1

)
· ch(η(1+`mxu,v)

m+1 Km,n)
)

= 1
Vol(KH,1(`n)) ∑

0≤u,v≤`−1
Z

((
1 u

0 1

)(
` 0

0 1

)
·
((

` 0

0 1

)−1
·φ1,n⊗ ch(η(1+`mxu,v)

m+1 Km,n)

))
= 1

Vol(KH,1(`n)) ∑
0≤u,v≤`−1

Z

((
` 0

0 1

)−1
·φ1,n⊗ ch(η(1+`mxu,v)

m+1 Km,n)

)
= 1

Vol(KH,1(`n)) ∑
0≤u,v≤`−1

Z
(

ch(`n+1Z`× (1+ `nZ`))⊗ ch(η(1+`mxu,v)
m+1 Km,n)

)
= `−1

∑
0≤u,v≤`−1

Z
(

φ1,∞⊗ ch(η(1+`mxu,v)
m+1 Km,n)

)

In the second equality we used that φ1,n is fixed by
(

1 −u

0 1

)
, in the third equality we

used the fact that Z is H(Q`)-equivariant and the action on the target is trivial. The

fourth one is a consequence of the definition of φ1,n and the action of H(Q`) on

Schwartz functions. For the last one one reasons as follows. Write S′ = `n+1Z`×

(1+ `nZ`) and S = `n+1Z`× (1+ `n+1Z`); in particular ch(S) = φ1,n+1. Now we

write

Stab(S) = KH,1(`
n+1)⊂ Stab(S′) = {

(
a b

c d

)
∈ H(Z`) : c≡ 0(`n+1),d ≡ 1(`n)}.
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We also write Σ = {
(

1 0

0 1+ `nk

)
}0≤k≤`−1, which is a set of representatives for the quo-

tient Stab(S′)/Stab(S). We can then write

ch(S′) = ∑
σ∈Σ

σ · ch(S) = ∑
σ∈Σ

σ ·φ1,n+1.

It is easy to check that for every σ ∈ Σ, letting ξu,v := ch(η(1+`mxu,v)
m+1 Km,n) we have

σ ·ξu,v = ξu,v. Hence we find

Z(ch(S′)⊗ξu,v) = ∑
σ

Z(σ ·φ1,n+1⊗ξu,v)

= ∑
σ

Z(σ · (φ1,n+1⊗σ
−1 ·ξu,v)) = ∑

σ

Z(φ1,n+1⊗ξu,v)

= ` ·Z(φ1,n+1⊗ξu,v).

Hence we can write

1
Vol(KH,1(`n)) ∑

0≤u,v≤`−1
Z
(
ch(S′)⊗ξu,v

)
= `

Vol(KH,1(`n)) ∑
0≤v≤`−1

Z(φ1,n+1⊗ξu,v)

= `−1

Vol(KH,1(`n+1)) ∑
0≤u,v≤`−1

Z(φ1,n+1⊗ξu,v)

= `−1
∑

0≤u,v≤`−1
Z
(

φ1,∞⊗ ch(η(1+`mv)
m+1 Km,n)

)
,

where for the second equality we used [KH,1(`
n) : KH,1(`

n+1)] = `2.

Now we notice that

(
a 0

0 1

)
ηm+1

(
a−1 0

0 1

)
= η

(a)
m+1.

Moreover for a≡ 1 modulo `mZ`,
(

a−1 0

0 1

)
∈ Km,n and hence

ch(ηm+1Km,n)
((

a−1 0

0 1

)
(−)
)
= ch(

(
a 0

0 1

)
ηm+1

(
a−1 0

0 1

)
Km,n) = ch(η(a)

m+1Km,n).
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Moreover, for such a’s, we have
(

a 0

0 1

)
·φ1,t = φ1,t hence we can write

Z(φ1,∞⊗ch(η(a)
m+1Km,n))=Z

(
φ1,∞⊗ ch(ηm+1Km,n)

((
a−1 0

0 1

)
(−)
))

=Z(φ1,∞⊗ch(ηm+1Km,n))

m≥ 1 Applying what we wrote above, we get that all the terms in the sum are

equal to Z(φ1,∞⊗ ch(ηm+1Km,n)) and hence

U ′(`) ·Z(φ1,∞⊗ ch(ηmKm,n)) = ` ·Z(φ1,∞⊗ ch(ηm+1Km,n))

m = 0 We can apply the same reasoning for all xu,v but for xu,v≡−1 modulo `. For

such xu,v we find ch(η(1+xu,v)
1 K0,n) = ch(K0,n). We have exactly ` pairs (u,v) such

that xu,v≡−1; for the remaining `2−`= `(`−1) terms we have
(

1+ xu,v 0

0 1

)
∈K0,n and

we find as above Z(φ1,∞⊗ ch(η(1+xu,v)
1 K0,n)) = Z(φ1,∞⊗ ch(η1K0,n)). We therefore

obtain

U ′(`) ·Z(φ1,∞⊗ ch(K0,n)) = (`−1) ·Z(φ1,∞⊗ ch(η1K0,n))+Z(φ1,∞⊗ ch(K0,n))

We now want to go back to the case where W is the smooth dual of principal

series representation and τ = IH(χ,ψ) in order to use the bijection of Proposition

4.5.11 and Theorem 4.5.8. First of all let K = G(Z`). We assume that the Haar mea-

sures on G(Q`) and on H(Q`) are normalised to that Vol(G(Z`)) =Vol(H(Z`)) = 1.

We also recall the Siegel section map used above

S (Q2
` ,C)→ IH(χ,ψ)

φ 7→ Fφ ,χ,ψ := f
φ̂ ,χ,ψ ,

that is H(Q`) equivariant if χ,ψ are unramified.

Corollary 4.5.20. Let W = σ∨ for σ a principal series representation with central

character χσ . Let χ,ψ unramified characters such that

• χ = | · |1/2+kτ , for τ a finite order character (that may be ramified) and k≥ 0
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integers;

• ψ = | · |−1/2;

• we assume that σ satisfies χψ ·χσ = 1 and (?) holds.

Let Z ∈ X(σ∨) and assume that it factors through the Siegel section map for the

above χ,ψ , i.e.

S (Q2
` ,C)⊗H (G) σ∨

IH(χ,ψ)⊗H (G)

Z

Then we have

Z(φ1,∞⊗ (ch(K)− ch(η1K))) = `
`−1L(As(σ),0)−1 ·Z(φ0⊗ ch(K)),

where φ0 is as in Definition 4.2.28.

Proof. We write φ0,1 := ch(`Z`×Z×` ) and

K0 := Stab(`Z`×Z×` ) = {γ ∈ H(Z`) : γ ≡
(
∗ ∗

0 ∗

)
mod `}.

We also recall that φ1,1 = ch(`Z`×(1+`Z`)) and write K1 :=KH,1(`) = Stab(`Z`×

(1+ `Z`)). For every σ ∈ H(Z`) ⊂ K = G(Z`), we have σ · ch(K) = ch(K) and

hence

Z(σ ·φ1,1× ch(K)) = Z(σ · (φ1,1× ch(K))) = Z(φ1,1× ch(K)).

Applying this and writing φ0,1 = ∑σ∈K0/K1 σ ·φ1,1, we obtain

Z(φ1,∞⊗ ch(K)) = 1
Vol(K1)

Z(φ1,1⊗ ch(K)) = 1
[K0:K1]Vol(K1)

Z(φ0,1⊗ ch(K))

= 1
Vol(K0)

Z(φ0,1⊗ ch(K)) = (`+1)Z(φ0,1⊗ ch(K)),
(4.5.1)

where in the last step we used the fact that Vol(H(Z`)) = 1 and [H(Z`) : K0] = `+1.



4.5. Towards norm relations 138

Then applying the previous proposition we find, writing KG,1 := K0,1,

Z(φ1,∞⊗ ch(η1KG,1)) =
1

`−1(U
′(`)−1) ·Z(φ1,∞⊗ ch(KG,1)).

Let KG,0 be the subgroup of G given by matrices congruent to
(
∗ ∗

0 ∗

)
modulo `.

Next we sum on both side of the last equality over representatives of K/KG,1. On

the left hand side we obtain Z(φ1,∞⊗ ch(η1K)). On the right hand side, writing

K/KG,1 = K/KG,0 ·KG,0/KG,1, and using the fact that KG,0/KG,1 commutes with the

Hecke operator U ′(`), we obtain

1
`−1 ∑

γ∈K/KG,0

γ · (U ′(`)−1)Z(φ1,∞⊗ ch(KG,0)).

Moreover we can argue as before, using the fact that σ · ch(KG,0) = ch(KG,0) for

σ ∈ K0 ⊂ KG,0, we can rewrite Z(φ1,∞⊗ ch(KG,0)) as (`+ 1)Z(φ0,1⊗ ch(KG,0)).

Overall we have obtained

Z(φ1,∞⊗ ch(η1K)) =
`+1
`−1 ∑

γ∈K/KG,0

γ · (U ′(`)−1)Z(φ0,1⊗ ch(KG,0))

=
`+1
`−1 ∑

γ∈K/KG,0

γ ·U ′(`)Z(φ0,1⊗ ch(KG,0))−
`+1
`−1

Z(φ0,1⊗ ch(K)).

(4.5.2)

Combining (4.5.1) and (4.5.2), one obtains

Z(φ1,∞⊗ (ch(K)− ch(η1K))) = (`+1)(1+ 1
`−1)Z(φ0,1⊗ ch(K))

− `+1
`−1 ∑

γ∈K/KG,0

γ ·U ′(`)Z(φ0,1⊗ ch(KG,0)).
(4.5.3)

We finally use the assumption that Z factors through the Siegel section. First

we suppose that τ is ramified. Since both φ0 and φ0,1 are invariant under the action

of matrices of the form
(

a ∗

0 d

)
for a,d ∈ Z×` , ∗ ∈ Z`, we get

Fφ0,χ,ψ = χ(a) ·Fφ0,χ,ψ ,

and being χ ramified, this implies that Fφ0,χ,ψ = 0. Similarly Fφ0,1,χ,ψ = 0 and the
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claimed equality reads 0 = 0. So we can suppose τ unramified, so that we are

able to apply Theorem 4.5.8 (where φ1 is our φ0,1). Using Remark 4.5.13, the two

equalities of the theorem give us

Z(φ0,1⊗ ch(K)) = 1
(`+1) ·

(
1− `k

τ(`)

)
·Z(φ0⊗ ch(K)),

U ′(`)·Z(φ0,1⊗ch(KG,0))=
`

(`+1) ·
[(

1− `k

τ(`)

)
−L(As(σ),0)−1

]
·Z(φ0⊗ch(KG,0)).

Hence we rewrite the two terms on the right hand side of (4.5.3) as

(`+1)(1+ 1
`−1)Z(φ0,1⊗ ch(K)) = `

`−1

(
1− `k

τ(`)

)
·Z(φ0⊗ ch(K)),

`+1
`−1 ∑

γ∈K/KG,0

γ ·U ′(`)Z(φ0,1⊗ ch(KG,0))

= `
(`−1) ·

[(
1− `k

τ(`)

)
−L(As(σ),0)−1

]
∑

γ∈K/KG,0

γ ·Z(φ0⊗ ch(KG,0))

= `
(`−1) ·

[(
1− `k

τ(`)

)
−L(As(σ),0)−1

]
Z(φ0⊗ ch(K))

and get the claimed equality.

Remark 4.5.21. An easy adaptation of the arguments allows to prove analogous

results for Z ∈ X(σ∨)[h], where we denote by X(σ∨)[h] the space of functions

Z : (S (Q2
` ,C)⊗| · |h)⊗H (G)→ σ∨, for some positive integer h. Hence we are

twisting the action of H(Q`) on S (Q2
` ,C) by a power of the determinant. Note

that in the proof of Proposition 4.5.19, the the invariance of Z by matrices of non-

invertible determinant is used only to pull out
(

`−1 0

0 1

)
and hence the statement be-

comes

Z(φ1,∞⊗ch(ηm+1Km,n))=


`−h

` U ′(`)

1
`−1(`

−hU ′(`)−1)
·Z(φ1,∞⊗ch(ηmKm,n))

if m≥ 1

if m = 0.

Moreover, the space of maps in X(σ∨)[h] factoring through the Siegel section for

χψχσ = 1 will now be isomorphic, via the bijection of Proposition 4.5.11, to a
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space of the form HomH(IH(χ| · |h,ψ| · |h)⊗σ , |det |h). Theorem 4.5.1 implies that

this space is again one dimensional, and the construction of a basis carries through

as in Section § 4.5, where in the choice of the auxiliary character in Definition 4.5.2

ψ is replaced by ψ| · |h. The multiplying factor on the RHS of (ii) in Theorem 4.5.8

becomes
`1+h

(`+1)
·
[(

1− `k

τ(`)

)
−L(As(σ),h)−1

]
and the statement of Corollary 4.5.20 hence becomes

Z(φ1,∞⊗ (ch(K)− ch(η1K))) = `
`−1L(As(σ),h)−1 ·Z(φ0⊗ ch(K)).

Remark 4.5.22 (Towards Asai–Flach Euler system). As anticipated in the introduc-

tion, in order to (re)define the Euler system constructed in [LLZ18], we will define

a special map A F k,k’,j
mot for k,k′ ≥ 0 integers and 0 ≤ j ≤ min(k,k′) with values

in W = H3
mot(YG,D(2)), where YG is the Shimura variety associated to G and D is

a motivic sheaf depending on k,k′, j. Such map will be of “global nature”, more

precisely it is a map

A F k,k’,j
mot : S (A2

f ,Q)⊗H (G(A f ),Q)−→ H3
mot(YG,D(2))

satisfying conditions of H(A f )×G(A f )-equivariance with actions defined as in

Definition 4.5.10. The Asai–Flach classes will be defined by images via A F k,k’,j
mot

of very precise elements in S (A2
f ,Q)⊗H (G(A f ),Q), whose local components

will be the one we considered in this section. Proving norm relations (in motivic

cohomology) will turn out to be equivalent to prove relations of such classes locally

at a certain prime q, i.e. we will be looking at a map

Z := (A F k,k’,j
mot )q : S (Q2

q,Q)⊗H (G(Qq),Q)−→W = H3
mot(YG,D(2)) ∈ X(W ).

In order to prove norm relations of vertical type, we will be able to apply Proposi-

tion 4.5.19. While for proving “tame norm relatitons” the input local data will be

essentially the one in Corollary 4.5.20, but we have the strong assumption on W .
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We will have to apply the étale regulator and Hochschild—Serre spectral sequence

to pass to Galois cohomology and finally take the projection to an automorphic rep-

resentation of G associated to an Hilbert modular form of weight (k + 2,k′+ 2).

As anticipated in Remark 4.2.19, the local component at a “good prime” ` of this

representation will be a spherical principal series representation, so we will finally

be able to apply Corollary 4.5.20.

4.6 Eisenstein classes for H = GL2

We now recall which are the elements in motivic cohomology that we are actually

going to consider. This is [LSZ20a, § 7].

Write S0(A2
f ,Q) ⊂ S (A2

f ,Q) for the subspace of functions φ satisfying

φ(0,0) = 0. Recall the notation of § 2.3.2, where we denoted by YH the infinite

level modular curve and we defined the relative Chow motives TSymk HQ(E ).

Theorem 4.6.1 (Eisenstein symbol maps).

1. ([Col04, Théorème 1.8]) There is a canonical H(A f )-equivariant map

S0(A2
f ,Q)−→ H1

mot(YH ,Q(1)) = O(YH)
×⊗Q

φ 7−→ gφ

characterised by the following: if φ = ch((a,b)+NẐ) for some N ≥,a,b ∈

Q2−NZ2, then gφ = ga/N,b/N , the Siegel unit of Definition 2.1.11.

2. ([BL94, §2]) Let k ≥ 1. There is a H(A f )-equivariant map

S (A2
f ,Q)−→ H1

mot(YH ,TSymk HQ(E )(1))

φ 7−→ Eisk
φ ,

characterised by the following: the pullback of its de Rham realisation is the

TSymk H (E )-valued differential 1-form−F(k+2)
φ

(τ)(2πidz)k(2πidτ), where

F(k+2)
φ

is the Eisenstein series defined as in [LSZ20a, Theorem 7.2.2].
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Remark 4.6.2. If φ = ch((0,b)+NẐ), then Eisk
φ

is the class defined in [KLZ15,

Theorem 4.1.1]. Moreover, it is a consequence of Kronecker limit formula that

if φ ∈ S0(A2
f ,Q), d loggφ , which is the de Rham realisation of gφ , is equal to

−F(2)
φ

(2πidτ).

Remark 4.6.3. The H(A f )-equivariance of the map in (1) is equivalent to some of

the properties of Siegel units we stated in Chapter 2 (see Proposition 2.1.14).

We will need a description of the target of these maps in terms of “adelic in-

duced representations”. The reader should have in mind, for the following discus-

sion, that we are going to define classes using Eisenstein elements and, in order to

apply the local results of the previous sections, it will be helpful to identify motivic

cohomology with H(A f ) representations that locally look like IH(Q`)(χ,ψ). More

precisely, we have the following.

Definition 4.6.4. For k ≥ 0 and η a finite order character of A×f /Q
×+ such that

η(−1) = (−1)k, we define Ik(η) to be the space of functions f : H(A f )→ C such

that

f
((

a b

0 d

)
g
)
=‖ a ‖k+1‖ d ‖−1

η(a) f (g), for every g ∈H(A f ),a,d ∈A×f ,b ∈A f .

We view it as a H(A f ) representation by right translation. For k = 0 and η = 1, we

define I0
0 (1) to be the subrepresentation which is the kernel of the integration over

H(A f )/B(A f ) on I0(1).

Remark 4.6.5. Notice that restricting f ∈ Ik(η) to H(Q`), we find an element f` in

the space

IH(Q`)(| · |
1/2+k

η`, | · |−1/2),

with notation as in §4.2.

We finally relate motivic cohomology to these representations.

Theorem 4.6.6. With notation as above,
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1. ([Sch89, Theorem 3]) there is a H(A f )-equivariant isomorphism

∂0 :
O×(YH)

(Qab)×
⊗C−→ I0

0 (1)⊕
⊕
η 6=1

I0(η),

characterised by the fact that ∂0(g)(1) is the order of vanishing of g at the

cusp ∞.

2. For k ≥ 1, there is a surjective H(A f )-equivariant map

∂k : H1
mot(YH ,TSymk HQ(E )(1))⊗C−→

⊕
η

Ik(η),

such that ∂k(x)(1) is the residue at ∞ of the de Rham realisation of x. More-

over this map is an isomorphism on the image of the Eisenstein symbol. (See

[SS91, Theorem 7.4] and [Lem17, Lemma 4.3])

Moreover, we have an explicit description of the image of the Eisenstein sym-

bols via these maps. Write S (A2
f ,C)η for the subspace of S (A2

f ,C) on which Ẑ×

acts via the character η .

Proposition 4.6.7. ([LSZ20a, Proposition 7.3.4]) Let φ ∈ S (A2
f ,C)η and write

φ = ∏`φ`. If k = 0 and η = 1, assume that φ(0,0) = 0. Then we have

∂k(Eisk
mot,φ ) =

2(k+1)!L(k+2,η)

(−2πi)k+2 ∏
`

f
φ̂`,|·|1/2+kη`,|·|−1/2,

where the functions in the product are the Siegel sections of Proposition 4.2.26.

4.7 Definition of Asai–Flach map and classes

4.7.1 Definition of the map

We fix integers k,k′ ≥ 0 such that k+2t = k′+2t ′ and write Dk,k′ :=H
[λ ]

L (−t− t ′),

for the relative Chow motive over the infinite level Hilbert modular surface YG as

defined in 2.3.2.2. We will fix j such that 0≤ j≤min(k,k′). The goal of this section
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is to define a map

A F k,k’,j
mot : S (A2

f ,Q)⊗H (G(A f ),Q)−→ H3
mot(YG,D

k,k′(2− j))

that is H(A f )×G(A f ) equivariant, with actions given as follows

• H(A f ) acts trivially on the target and it acts on S (A2
f ,Q)⊗H (G(A f ),Q)

via

h · (φ ⊗ξ ) = (h ·φ)⊗ξ (h−1(−)).

• G(A f ) acts via the natural action on H3
mot(YG,D

k,k′(2− j)) and on the source

via

g · (φ ⊗ξ ) = φ ⊗ξ ((−)g).

We consider open compact subgroups U ⊂ G(A f ) such that the natural map

ιU : YH(U ∩H)→ YG(U)

is a closed embedding. It is easy to check that this holds for U sufficiently small.

We then have that the Hecke algebra H (G(A f ),Z) is generated as a Z-module by

the functions of the form ch(gU) where g ∈ G(A f ) and U is as above.

Definition 4.7.1. Fix an Haar measure on H(A f ) and let V ⊂ H(A f ) an open com-

pact subgroup. We define a map AV : S (A2
f ,Q)→S (A2

f ,Q)V by

AV (φ) :=
∫

V
h ·φdh = Vol(W ) · ∑

v∈V/W
v ·φ ,

where W is an open compact subgroup of V fixing φ .

The following lemma is an immediate consequence of the definition.

Lemma 4.7.2. If V ′ ⊂V , we have AV (φ) = ∑v ·AV ′(φ), where V =
⊔

vV ′.

Now let x ∈ G(A f ) and U such that xUx−1 is sufficiently small. Let

ξ = ch(xU) ∈H (G(A f ),Z), V = H ∩ xUx−1.
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We denote by ιxU the closed embedding obtained by

ιxU : YH(V )
ιxUx−1
↪−−−→ YG(xUx−1)

'−→
·x

YG(U).

Moreover (2.3.5) gives a map CG[k,k′, j]
mot

H i
mot(YH(V ),TSymk+k′−2 j HL(n))[ j+t+t ′]→H i

mot(YH(V ), ι∗(H
[λ ]

L )(n− j−(t+t ′))),

where we added the twist by the ( j+ t + t ′)-th power of the determinant, meaning

tensoring with the one dimensional representation on which H(A f ) acts as ( j+ t +

t ′)-th power of the determinant. One also has, as in (2.3.1), a pushforward map

(ιxUx−1)∗ : H i
mot(YH(V ), ι∗xUx−1(H

[λ ]
L )(n))→ H i+2

mot (YG(xUx−1),H
[λ ]

L (n+1)).

Composing such morphisms for i = 1,n = 1 with the isomorphism in cohomology3

induced by multiplication by x, we obtain a map

H1
mot(YH(V ),TSymk+k′−2 j HQ(1))[ j+t+t ′]

ι
[k,k′, j]
xU,∗−−−→H3

mot(YG(U),H
[λ ]

L (2− j−(t+t ′))).

We also have, from the previous chapter, a H(A f )-equivariant map

S (A2
f ,Q)→ H1

mot(YH ,TSymk+k′−2 j HQ(1))

φ 7−→ Eisk+k′−2 j
mot,φ .

In particular if φ ∈ S (A2
f ,Q)V for some V ⊂ H(A f ), we have Eisk+k′−2 j

mot,φ ∈

H1
mot(YH(V ),TSymk+k′−2 j HQ(1)). We can finally make the following definition:

Definition 4.7.3. The level U motivic Asai–Flach map A F k,k’,j
mot ,U for k,k′, j and U

3Note that by abuse of notation we denote by H
[λ ]

L both the relative Chow motive on YG(U) and
on YG(xUx−1); the map in cohomology is the one described in 2.3.2.3.
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as above is defined by

S (A2
f ,Q)[ j+ t + t ′]⊗H (G(A f ),Z)−→ H3

mot(YG(U),H
[λ ]

L (2− j− (t + t ′)))

φ ⊗ξ 7−→ ι
[k,k′, j]
xU,∗ (Eisk+k′−2 j

mot,AV (φ)
),

where ξ = ch(xU) as above and V =H∩xUx−1. Since the Hecke algebra is spanned

by functions of this form, A F k,k’,j
mot is defined extending by Z-linearity.

Proposition 4.7.4. The above defined map satisfies

(a) If ξ ′ = g ·ξ for g ∈ G(A f ), then

A F k,k’,j
mot ,gUg−1(φ ⊗ξ

′) = g ·A F k,k’,j
mot ,U(φ ⊗ξ );

(b) For every h ∈ H(A f ), one has

A F k,k’,j
mot ,U(h · (φ ⊗ξ )) = A F k,k’,j

mot ,U(φ ⊗ξ );

(c) If U ′ ⊂ U, writing π : YG(U ′)→ YG(U) for the natural projection map, we

find

A F k,k’,j
mot ,U ′(φ ⊗ξ ) = π

∗A F k,k’,j
mot ,U(φ ⊗ξ ).

Proof. We prove all the statements for ξ = ch(xU), which is enough because func-

tions of this form span the Hecke algebra.

(a) We find that ξ ′ = ch(xg−1(gUg)). Then the statement follows from the

commutativity of the following diagram

YG(xUx−1) YG(U)

YG(xUx−1) YG(gUg−1).

Id

·x

·g−1

·xg−1

together with the fact that the action of g on cohomology is precisely given by the

pushforward of the right vertical map.
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(b) We have, by definition of the action, h · (φ ⊗ξ ) = h ·φ ⊗ch(hxU). Writing

V = xUx−1∩H and using AhV h−1(h ·φ) = h ·AV (φ) we get the desired equality.

(c) It suffices to prove the statement in the case where U ′EU , since otherwise

we can compare both U and U ′ with a third open compact normal in both of them).

We can write ξ = ch(xU) = ∑u∈U/U ′ ch(xuU ′). We then use the commutativity of

the following diagram

YH(V ′) YG(U ′)

YH(V ) YG(U),

πV/V ′

ιxU ′

π

ιxU

where V = H(A f )∩ xUx−1, V ′ = H(A f )∩ xU ′x−1 and the vertical arrows are the

natural projection maps. We find

π
∗
π∗A F k,k’,j

mot ,U ′(φ ⊗ ch(xU ′)) = π
∗
π∗(ιxU ′)∗(Eisk+k′−2 j

mot,AV ′(φ)
)

= π
∗(ιxU)∗(πV/V ′)∗(Eisk+k′−2 j

mot,AV ′(φ)
) = π

∗(ιxU)∗(Eisk+k′−2 j
mot,AV (φ)

) = π
∗A F k,k’,j

mot ,U ′(φ ⊗ ch(xU)),

where in the second to last equality we applied the H(A f )-equivariance of the Eisen-

stein map and Lemma 4.7.2. Since π∗ ◦π∗ = ∑u∈U/U ′ u and ∑u∈U/U ′ u · ch(xU ′) =

ch(xU), we can apply (a) and the assumption on U ′ being normal in U to con-

clude.

Definition 4.7.5. We define

A F k,k’,j
mot : S (A2

f ,Q)[ j+t+t ′]⊗H (G(A f ),Z)−→H3
mot(YG,H

[λ ]
L (2− j−(t+t ′)))

to be the direct limit lim−→U
A F k,k’,j

mot ,U . This is well defined thanks to (c) in the

above Proposition and is H(A f )×G(A f )-equivariant with respect to the action

given above thanks to (a)-(b) in the above Proposition.

4.7.2 Definition of the classes in motivic cohomology

In order to define the Asai–Flach elements in motivic cohomology, we will specify

the choice of an element in S (A2
f ,Q)⊗H (G(A f ),Z) to which we will apply

A F k,k’,j
mot .
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We start by fixing a prime p, a finite set of primes S not containing p. Our

choice will also depend on integers m,M ≥ 1 with M coprime to S and p. We

now will define KM,m,n ⊂ G(A f ),W ⊂ H(A f ) and φM,m,n ∈ S (A2
f ,Q),ξM,m,n ∈

H (G(A f ),Z) satisfying certain properties and apply A F k,k’,j
mot in order to define

an element

z[k,k
′, j]

M,m,n := 1
Vol(W ) A F k,k’,j

mot (φM,m,n⊗ξM,m,n)∈H3
mot(YG(KM,m,n),H

[λ ]
L (2− j−(t+t ′))).

Every definition of such data will be given in term of local data. Writing QS =

∏`∈SQ` we will define

• subgroups KS ⊂ G(QS),Kp,n ⊂ G(Qp) and let

Kn := KS×Kp,n× ∏
6̀∈S∪{p}

G(Z`)⊂ G(A f );

• A subgroup KM,m,n ⊂ Kn, defined by Kn∩det−1(1+MpmÔF);

• functions φS ∈S (Q2
S,Z),φ` ∈S (Q2

` ,Z) for ` 6∈ S and let

φM,m,n := φS⊗
⊗
6̀∈S

φ`;

• elements ξ` ∈H (G(Q`),Z) for ` 6∈ S and let

ξM,m,n := ch(KS)⊗
⊗
6̀∈S

ξ`;

• an open compact subgroup W ⊂ H(A f ) defined choosing WS ⊂ H(QS)∩KS

acting trivially on φS and W` ⊂ H(Q`) for ` 6∈ S and letting

W :=WS×∏
6̀∈S

W`.

We consider fixed the choices at S and require that the global elements satisfy the

following
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(i) ξM,m,n is fixed by right translation of KM,m,n,

(ii) ξM,m,n is fixed by left translation of W ,

(iii) φM,m,n is stable under the action of W .

We first define the level subgroup Kn. We are only left with saying what is the

choice at p. We let

Kp,n := {
(

a b

c d

)
∈ G(Zp) : c≡ d−1≡ 0 mod pn}.

The desired subgroup KM,m,n will then be given at p by

{g ∈ Kp,n : detg≡ 1 mod MpmẐ}.

Write K∗M,m,n :=KM,m,n∩G∗(A f )⊂K∗n :=Kn∩G∗(A f ). We then have (cf. [LSZ20a,

Proposition 5.4.2]) that the determinant map induces an isomorphism

YG∗(K∗M,m,n)' YG∗(K∗n )×Q µMpm , (4.7.1)

where as in the previous Chapter µMpm denotes the group scheme of primitive Mpm-

th roots of unity. We now define the local terms of ξM,m,n,φM,m,n,W at places ` 6∈ S,

dividing the three cases ` -Mp, ` |M, `= p. First of all we write, for r ≥ 0,

η`,r :=


((

1 0

0 1

)
,

(
1 1

`r

0 1

))
∈ GL2(Q`)×GL2(Q`) if ` splits(

1 δ
1
`r

0 1

)
∈ GL2(F̀ ) if ` is inert.

This is the element ηr defined in Definition 4.5.17.

` -Mp: We let

ξ` = ch(G(Z`)), W` = H(Z`), φ` = ch(Z2
`).
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` |M: First we define K`,1 = {g ∈ G(Z`) : detg≡ 1 mod `}. We then let

ξ` = ch(K`,1)− ch(η`,1K`,1),

W` = {h ∈ H(Z`) : deth≡ 1 mod `,h≡
(
∗ ∗

0 1

)
mod `2},

φ` = ch(`2Z`× (1+ `2Z`)).

`= p: We define Kp,m,n = {g ∈G(Zp) : detg≡ 1 mod pm,g≡
(
∗ ∗

0 1

)
mod pn}.

Let

ξp = ch(ηp,mKp,m,n).

We then choose an integer t ≥ 1 big enough such that Wp ⊂ ηp,mKp,m,nη−1
p,m, where

Wp = {h ∈ H(Z`) : deth≡ 1 mod pm,h≡
(
∗ ∗

0 1

)
mod pt}.

Finally for such choice of t we let

φp = ch(ptZp× (1+ ptZp)).

It follows easily from the definitions that conditions (i),(ii),(iii) above are sat-

isfied. We finally can, as anticipated above, make the following definition:

Definition 4.7.6. For M,m,n and W,φM,m,n,ξM,m,n as above, we define

z[k,k
′, j]

M,m,n := 1
Vol(W ) A F k,k’,j

mot (φM,m,n⊗ξM,m,n) ∈ H3
mot(YG,H

[λ ](2− j− (t + t ′)))

Lemma 4.7.7. The above definition is independent on the choice of the Haar mea-

sure on H(A f ) and on the choice of t at the place p.

Proof. Writing U := KM,m,n, we have, from (i) and (ii) that ξM,m,n ∈H (W\G/U).

We rewrite it as

ξM,m,n = ∑ch(xiU),

where ch(xiU) is left invariant under W , i.e. W ⊂ Vi := H(A f )∩ xiUx−1
i . Hence
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writing ιi := ιxiU we have that by definition our classes are

1
Vol(W ) ∑

i
(ιi)∗ ◦CG[k,k′, j]

mot (Eisk+k′−2 j
mot,AVi(φ)

),

where φ = φM,m,n. Using (iii), the definition of the averaging map and the fact

that Eisk+k′−2 j
mot,− is H(A f )-equivariant, we can write Eisk+k′−2 j

mot,AVi(φ)
=Vol(W )∑v∈Vi/W v ·

Eisk+k′−2 j
mot,φ , from which the independence on the Haar measure becomes clear.

Write now W for the subgroup defined by the condition at p with a fixed choice

of t and W 0 for the subgroup defined with a different choice, say t0 > t. We similarly

write φM,m,n and φ 0
M,m,n. We can write

φM,m,n = ∑
w∈W/W 0

w ·φ 0
M,m,n.

We obtain

1
Vol(W ) A F k,k’,j

mot (φM,m,n⊗ξM,m,n) =
1

Vol(W ) ∑
w

A F k,k’,j
mot (w ·φ 0

M,m,n⊗ξM,m,n)

= 1
Vol(W ) ∑

w
A F k,k’,j

mot (w · (φ 0
M,m,n⊗ξM,m,n))

= [W :W 0]
Vol(W ) A F k,k’,j

mot (φ 0
M,m,n⊗ξM,m,n)

= 1
Vol(W 0)

A F k,k’,j
mot (φ 0

M,m,n⊗ξM,m,n).

In the second equality we used (ii), and in the third the fact that A F k,k’,j
mot is H(A f )-

equivariant.

Condition (i) together with the fact that A F k,k’,j
mot is G(A f )-equivariant implies

z[k,k
′, j]

M,m,n ∈ H3
mot(YG(KM,m,n),H

[λ ](2− j− (t + t ′))),

as wanted.

4.7.3 Comparison with Chapter 3 and [LLZ18]

In order to recover the definition of Asai–Flach classes given in the previous chapter

for k = k′ = 0 (and more in general in [LLZ18]), we fix N an ideal of OF coprime
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to p. Write (N) = N∩Z and choose the set S to be given by primes ` | N. For

simplicity we will assume N is square-free, in particular N = ∏`|N L`, where L` is

a prime ideal of OF above `. We then let KS = ∏`|N K` ⊂ G(QS), where

K` := {
(

a b

c d

)
∈ G(Z`) : c≡ d−1≡ 0 mod L`}.

We also choose φS ∈S (Q2
S,Z) to be ⊗`|N ch(`Z`× (1+ `Z`)). We finally let WS =

∏`|N W`, where

W` := {
(

a b

c d

)
∈ H(Z`) : c≡ d−1≡ 0 mod `}.

Pulling back z[k,k
′, j]

M,m,n to YG∗ , we find elements in

H3
mot(Y1(Npn)×µMpm,TSym[k,k′]H (A )(2− j)).

If M = 1,m = 0, these are the classes AF[k,k′, j]
mot,pn of [LLZ18, Definition 3.4.2]. In

particular, if k = k′ = j = 0, we recover the classes AF1,Npn of Definition 3.1.1.

To see this, notice that, from the choice of the local data, the averaging map sends

φM,m,n to Vol(W )φM,m,n. So what our map does is simply sending φM,m,n⊗ ξM,m,n

to ι∗(Eisk+k′−2 j
mot,φM,m,n

), where ι is the closed embedding

Y1(N pn) ↪→ Y ∗1 (Npn)

and φM,m,n = ch(N pnẐ× (1+N pnẐ)). In particular, if k = k′ = j = 0, Theorem

4.6.1(1) tells us that the class constructed is precisely ι∗(g0,1/N) as in Definition

3.1.1.

The classes AF[k,k′, j]
mot,Mpm,pn,a are defined in [LLZ18, Definition 3.5.1] (where the

trivial coefficient case is Definition 3.1.4/Lemma 3.1.5) using a twist by the matrix(
1 a

Mpm

0 1

)
, for any a ∈ OF/(MpmOF +Z). The role played by the Hecke algebra

H (G(A f )) in the definition of our map is exactly to produce such perturbation

of the embedding ι . Moreover, the input elements ξM,m,n ∈ H (G(A f )) we are

considering involve matrices of the same form for a specific choice of a ∈ OF ⊗
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Ẑ/(Mpm + Ẑ). More precisely we would get the same classes of [LLZ18] if we

took the `-component of ξM,m,n for ` | M to be ch(η`,1K`,1). The term ch(K`,1)

appearing in our definition can be thought as a correction term. Indeed the tame

norm relations we will prove are not the same as the ones obtained in Corollary 3.3.4

(and more generally in [LLZ18, Theorem 3.5.3, Corollary 4.3.8]), where the factor

appearing is the local Euler factor P(σ−1
` `−1− j) summed with a term divisible by

`−1. Thanks to the correction term at the primes dividing M, we in fact do not get

this extra factor and we are able to show that our classes form an Euler system, with

no need to lift the classes using [LLZ14, Lemma 7.3.4] ([Rub00, Lemma IX.6.1]).

4.8 The Asai–Flach Euler systems norm relations

4.8.1 Pushforward compatibilities in motivic cohomology

We now prove that the classes just defined satisfy compatibility properties if we

vary the level Kn and if we vary the cyclotomic field in the p-direction.

Theorem 4.8.1. For n ≥ 1 we have, writing πn : YG(KM,m,n+1)→ YG(KM,m,n) for

the natural projection,

(πn)∗(z
[k,k′, j]
M,m,n+1) = z[k,k

′, j]
M,m,n .

Proof. Going back to the definition of the local data in §4.7.2, we see that the only

place where these differ is p, where

ξp = ch(ηp,mKp,m,n),

while we can choose the same t sufficiently large, so that we have the same W and

the same φp in the definition of z[k,k
′, j]

M,m,n+1 and z[k,k
′, j]

M,m,n . So locally at p, we need to

check that

(πn)∗((A F k,k’,j
mot )p(φ ⊗ ch(xKp,m,n+1))) = (A F k,k’,j

mot )p(φ ⊗ ch(xKp,m,n)).

But this is true, since we can write ch(xKp,m,n) = ∑k∈Kp,m,n/Kp,m,n+1 ch(xkKp,m,n+1)

and the pushforward act on cohomology by multiplication of coset representatives
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k ∈ Kp,m,n/Kp,m,n+1.

The following theorem is essentially the proof of the vertical type Euler system

norm relation for the classes we will obtain in Galois cohomology in the next section

starting with the motivic input z[k,k
′, j]

M,m,n .

Theorem 4.8.2. For m ≥ 1 we have, writing πm : YG(KM,m+1,n)→ YG(KM,m,n) for

the natural projection,

(πm)∗(z
[k,k′, j]
M,m+1,n) =


U ′(p)
p j+t+t′(

U ′(p)
p j+t+t′ −1

) · z[k,k
′, j]

M,m,n
if m≥ 1

if m = 0,

where U ′(p) is the Hecke operator in H (Kp,m,n\G(Qp)/Kp,m,n) given by the dou-

ble coset of
(

p−1 0

0 1

)
.

Proof. This theorem follows from the choice of the local data and from Proposition

4.5.19. As in the previous theorem, the elements φM,m+1,n⊗ξM,m+1,n and φM,m,n⊗

ξM,m,n are the same at places different from p. Hence we are comparing two values

of the p-part map

(A F k,k’,j
mot )p : S (Qp)[ j+ t + t ′]⊗H (G(Qp))→ H3

mot(YG,H
[λ ]

L (2− j− (t + t ′))),

which is H(Qp)×G(Qp)-equivariant. Since it is enough to check the equality af-

ter tensoring with C, we can apply Proposition 4.5.19. Indeed, reasoning as in

the proof of the previous theorem, we have, that on the left hand side we have
1

Vol(Wp,m+1)
(A F k,k’,j

mot )p(φp⊗ch(ηp,m+1Kp,m,n)), where φp = ch(ptZp× (1+ ptZp))

and Wp,m+1 = {h ∈ H(Z`) : deth ≡ 1 mod pm+1,h ≡
(
∗ ∗

0 1

)
mod pt}. Hence the

classes we need to compare are

[KH,1(pt) : Wp,m+1](A F k,k’,j
mot )p(φ1,∞⊗ ch(ηp,m+1Kp,m,n)),

[KH,1(pt) : Wp,m](A F k,k’,j
mot )p(φ1,∞⊗ ch(ηp,mKp,m,n)).

The proposition tells us, together with Remark 4.5.21, that (A F k,k’,j
mot )p(φ1,∞ ⊗



4.8. The Asai–Flach Euler systems norm relations 155

ch(ηp,m+1Kp,m,n)) =
p−( j+t+t′)

p U ′(p)

1
p−1(U

′(p)p−( j+t+t ′)−1)
· (A F k,k’,j

mot )p(φ1,∞⊗ ch(ηp,mKp,m,n))
if m≥ 1

if m = 0.

The factors 1
p ,

1
p−1 cancels out since [KH,1(pt) : Wp,m]/[KH,1(pt) : Wp,m+1] = [Wp,m :

Wp,m+1] is equal to p, p−1 respectively.

4.8.2 Hilbert cuspforms and Galois representations

In the previous chapter, we constructed some classes

z[k,k
′, j]

M,m,n ∈ H3
mot(YG(KM,m,n),H

[λ ](2− j− (t + t ′))).

We now will realize these classes in étale cohomology and use the Hochschild–

Serre spectral sequence to find elements in Galois cohomology of the representation

attached to a weight (k+ 2,k′+ 2) Hilbert cuspform. We will then show that they

satisfy the Euler system norm relations.

We consider f a cuspidal Hilbert newform of weight (k+2,k′+2) and of level

K f ⊂ G(A f ). We assume k ≡ k′ mod 2 and we write w = k+2+2t = k′+2+2t ′.

Denote by L the number field generated by the Hecke eigenvalues {λm}m⊂OF and

fix a prime p. We fix an arbitrary place v of L dividing p.

Consider the Asai representation attached to f as in Definition 2.4.6 and the

Asai L-function, which was defined by an Euler product of factors PAs
` ( f , `−s) as in

Definition 2.4.8.

Recall that from the action of G(A f ) on H2
ét

(
(YG)Q̄,H

(λ )
Lv

(t + t ′)
)

we obtain

the finite part of the automorphic representation corresponding to f . We will denote

it by Π f =⊗′`Π`, where Π` is a G(Q`)-representation and it is spherical for all but

finitely many primes `. We can describe these Π` and relate the local L-factor with

the Asai Euler factor at ` using Proposition 2.4.9.
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Proposition 4.8.3. For ` as above, let

σ =

IG(Q`)(χ,ψ) if ` splits

IG(Q`)(χ,ψ) if ` is inert,

where

χ1(`) = α1`
−1/2, ψ1(`) = β1`

−1/2,

χ2(`) = α2`
−1/2, ψ2(`) = β2`

−1/2.
and χ(`) = α`−1,ψ(`) = β`−1.

We then find that Π` ' σ and

PAs
` ( f , `−1−s+t+t ′) =

L(σ ,s)

L(As(σ),s)

Proof. This follows from Proposition 2.4.9 and by applying Theorem 4.2.21 and

Remark 4.2.22. First we deal with the split prime case. At a place ` as above the

spherical representation is determined by the values χi(`),ψi(`) being the roots of

X2− `−1/2λiX + µi, where λi,µi are the eigenvalues of T (li),R(li). Since f is a

newform we have λi = ali( f ) and µi = `w−2ε`i( f ). Hence we need to solve

al1( f ) = α1 +β1 = `1/2(χ1(`)+ψ1(`)), `w−2εl1( f ) = `−1α1β1 = χ1(`)ψ1(`);

al2( f ) = α2 +β2 = `1/2(χ2(`)+ψ2(`)), `w−2εl2( f ) = `−1α2β2 = χ2(`)ψ2(`).

From where we find the claimed values of χi(`),ψi(`).

For the inert prime case we proceed similarly, finding χ(`),ψ(`) to be roots of

X2−(`2)−1/2λX +µ , where λ ,µ are the eigenvalues of T (`),R(`). Now λ = a`( f )

and µ = `2(w−2)ε`( f ). Hence from

a`( f ) = α +β = `(χ(`)+ψ(`)), `2(w−2)
ε`( f ) = `−2

αβ = χ(`)ψ(`)

we find the claimed values of χ(`),ψ(`).

We use the characterisation of the local components of Π = Π f obtained in the
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previous corollary to prove that if the Hilbert modular form is not a base change lift

of a modular form of GL2 /Q, then a certain Hom-space is zero. We denote by ωΠ

the Hecke character of F given by the central character of Π and we let χΠ`
be the

character of Q×` given by the restriction of Π` to the center of H(Q`).

Proposition 4.8.4. Let τ be the representation of H(A f ) given by γ(det), where γ

is a character of the idèles of Q such that γ2
` is equal to χΠ`

for every `. If Π is not

a twist of a base change lift of a cuspidal representation of H(A f ), then

HomH(A f )(Π,τ) = 0.

Proof. We will assume for simplicity that γ is trivial. If HomH(A f )(Π,τ) 6= 0 then

HomH(Q`)(Π`,1) 6= 0 for every `. In particular for all primes ` as above which split

in F , we have

HomH(Q`)(I(χ1,ψ1)⊗ I(χ2,ψ2),1) = HomH(Q`)(I(χ1,ψ1), I(χ−1
2 ,ψ−1

2 )) 6= 0.

Hence Π` = Πλ ⊗Π
λ̄

is of the form

I(χ1,ψ1)⊗ I(χ−1
1 ,ψ−1

1 ) or I(χ1,ψ1)⊗ I(ψ−1
1 ,χ−1

1 ).

Hence Πλ ' Π
λ̄
⊗ χ1ψ1. Letting σ be the non trivial automorphism of F/Q and

σ(Π)λ = Πσ(λ ), the representations Π and σ(Π)⊗ωΠ are isomorphic at all but

finitely many primes. This follows from the above reasoning for all but finitely

many split primes; for inert primes we have σ(Π)λ = Πλ and HomH(Q`)(Π`,1) 6= 0

forces the central character of Πλ to be trivial. Moreover ωΠ restricted to the idèles

of Q is trivial. We can then apply [LR98, Theorem 2(a)], which implies that Π is

a twist of a base change lift of a cuspidal representation of GL2 /Q and reach the

desired contradiction.

If γ is not trivial, we proceed as above and obtain that for all but finitely many

split primes Πλ 'Π
λ̄
⊗ χ1ψ1γ

−1
` ; for inert primes we have Π` 'Π`⊗ωΠ`

· (γ−1
` ◦

NmF̀ /Q`
). We find as above that Π is a twist of a base change lift of a cuspidal



4.8. The Asai–Flach Euler systems norm relations 158

representation of GL2 /Q, since it is isomorphic to a twist of σ(Π) by a Hecke

character trivial on the idèles of Q.

We now see that the Asai representation appears in the parabolic étale coho-

mology of YG. Write λ = (k,k′, t, t ′).

Definition 4.8.5. We define H
[λ ]

Lv
to be the étale sheaf of Lv-vector spaces on YG,

for U sufficiently small, which is the étale realisation of the motivic sheaf H
[λ ]

L of

§2.3.2.2. We denote by H
(λ )

Lv
its dual.

For simplicity let L := H
(λ )

Lv
(t + t ′). We consider parabolic étale cohomol-

ogy: let Y BB
G be the Bailey-Borel compactification of YG and write j : YG→ Y BB

G for

the natural open embedding. Then parabolic cohomology is defined by

H i
ét,!(YG,Q̄,L ) = lim

→K
H i

ét((YG(K)BB)Q̄, j!∗L ).

These cohomology groups have both a GQ and a G(A f ) action.

Theorem 4.8.6 ([Nek18],[BL84]). Let L be as above, with λ = (k,k′, t, t ′) where

k+2t = k′+2t ′. There is a GQ×G(A f )-equivariant decomposition

H2
ét,!(YG,Q̄,L ) =

⊕
Π

VΠ⊗Π
∨,

where Π runs over the finite part of cuspidal automorphic representations Π⊗Π∞

of G where Π∞ is a discrete series of weight (k+ 2,k′+ 2). We denote by Π∨ its

dual G(A f )-representation and VΠ is the GQ-representation defined by the tensor

induction of ρΠ twisted by t + t ′, where JL(ρΠ) = Π. In other words, if Π is the

automorphic representation generated by a Hilbert cuspidal eigenform f , ρΠ = ρ f ,v

and VΠ =V As
f .

Taking the dual (as GQ-module) of the cohomology group in the theorem, we

get a GQ×G(A f )-equivariant decomposition

H2
ét,!(YG,Q̄,H

[λ ]
Lv

(2− (t + t ′))) =
⊕

Π

V ∗Π⊗Π
∨.
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Let us now fix an automorphic cuspidal representation Π. We have the follow-

ing

Proposition 4.8.7. Let K ⊂G(A f ) be a level such that ΠK 6= 0 and T a set of primes

including the ones at which K is ramified. Let I be the maximal ideal of the Hecke

algebra away from T given by the kernel of the action on ΠK . Then the localisation

at I of H i
ét(YG(K)Q̄,L ) is zero for i 6= 2 is 0 and is equal to the localisation of

parabolic cohomology for i = 2.

Moreover such localisation is given by

(
H2

ét(YG(K)Q̄,L )
)

I
=
(
H2

ét,!(YG(K)Q̄,L )
)

I
=VΠ⊗ ((Π)∨[t + t ′])K,

In particular the localisation is independent on T .

Proof. For the fact that cuspidal representations contribute only to the degree 2

parabolic cohomology, see [Nek18, (5.9)]. The fact that the canonical map from

parabolic cohomology to étale cohomology in an isomorphism when localising at

I follows from example from the exact sequence in [Nek18, A6.17]. Finally the

Π-component is the only one appearing in the decomposition thanks to strong mul-

tiplicity one (see [PS79, Sha74]).

Now recall that the target of our map A F k,k’,j
mot is H3

mot(YG,H
[λ ]

L (2− j− (t +

t ′))). Let f be a fixed Hilbert eigenform of weight (k+ 2,k′+ 2) and Π the cor-

responding G(A f )-representation, so that V ∗
Π
= (V As

f )∗. In order to find classes in

Galois cohomology of (V As
f )∗ we will, roughly, use the continuous étale realisa-

tion map and then apply the above proposition together with the Hochschild–Serre

spectral sequence. We will find a G(A f )-equivariant map

prΠ : H3
mot(YG,H

[λ ]
L (2− j− (t + t ′)))−→ H1(Q,(VΠ)

∗(− j))⊗Π
∨.

We work for any K level subgroup of G(A f ).

• We have (see [Hub00]) a realisation functor for continuous étale cohomology
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(as defined in [Jan88]) for varieties defined over Q

rét : H3
mot(YG(K),H

[λ ]
L (2− j−(t+t ′)))−→H3

ét(YG(K),H
[λ ]

Lv
(2− j−(t+t ′))).

• There is an Hochschild–Serre spectral sequence (see again [Jan88]) relating

continuous étale cohomology for varieties over Q with étale cohomology of

the base change over Q̄

E p,q
2 = H p(Q,Hq

ét(YG(K),D))⇒ H p+q
ét (YG(K)Q̄,D).

From this, one gets a map from the kernel of the map H i
ét(YG(K),D) →

H i
ét(YG(K)Q̄,D)GQ to H1 (Q,H i−1

ét (YG(K)Q̄,D)
)
. In particular, for i = 3,

since Artin vanishing theorem tells us that H i
ét(YG(K)Q̄,D) = 0 being i >

dim(YG(K)) = 2, we obtain a map

HS : H3
ét(YG(K),H

[λ ]
Lv

(n))−→ H1
(
Q,H2

ét(YG(K)Q̄,H
[λ ]

Lv
(n))

)
,

where in particular we can take n = 2− j− (t + t ′).

• We now localise at the maximal ideal I given by the kernel of the Hecke

algebra acting on ΠK as in Proposition 4.8.7. Applying such proposition and

projecting to the Π-isotypic part we find

(H3
ét(YG(K),H

[λ ]
Lv

(2− j− (t + t ′))))I −→ H1
(
Q,(V As

f )∗(− j)
)
⊗ (Π∨)K.

Since all these maps are compatible with respect to changing K and since, by

Proposition 4.8.7, the localisation is independent on the choice of the set of primes

T (which may vary changing K), we can construct a map of G(A f )-representation.

Definition 4.8.8. We define prΠ to be the G(A f )-equivariant map

prΠ : H3
mot(YG,H

[λ ]
L (2− j− (t + t ′)))−→ H1

(
Q,(V As

f )∗(− j)
)
⊗Π

∨
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obtained by the previous steps and taking the limit with respect to K.

In order to define classes in Galois cohomology, we need to take a “projection”

to H1
(
Q,(V As

f )∗(− j)
)

from the target of the map in the previous definition. To do

that we assume that Π is unramified at p. We can consider Π
G(Zp)
p 6= 0. Let

K0(p) = {γ ∈ G(Zp) : γ ≡
(
∗ ∗

0 ∗

)
mod p}.

We choose α to be one of the eigenvalues of the Hecke operator U(p) acting on

Π
K0(p)
p . We fix a finite set of primes S to be set of primes outside which Π` is a

spherical representation. We now fix the local data as in §4.7.2. Write

K′ := KS×∏
`-pS

G(Z`)×K0(p),

where KS is chosen so that ΠK′ 6= 0 and K′ is sufficiently small. In particular we

assume that the conductor of Π is not trivial and it is coprime to 2,3 and the dis-

criminant of F . We fix and choose an arbitrary vector vα ∈ ΠK′ in the U(p) = α

eigenspace. This gives a homomorphism

vα : (Π∨)K′ −→ Lv.

Note that the choice of this line in (Π∨)K′ is arbitrary, however if one wants to work

with integral classes and apply these results in the setting of Iwasawa theory, then

the assumption of Π being ordinary at p is added and one chooses α to be the unique

eigenvalue of U(p) which is a p-adic unit.

What we are going to do is to consider the image of the KM,m,n-invariant classes

defined in §4.7.2, take the image via the G(A f )-equivariant map prΠ and then apply

vα . For W,φM,m,n,ξM,m,n as in §4.7.2, we consider z[k,k
′, j]

M,m,n as in Definition 4.7.6,

z[k,k
′, j]

M,m,n = 1
Vol(W ) A F k,k’,j

mot (φM,m,n⊗ξM,m,n) ∈ H3
mot(YG,H

[λ ](2− j− (t + t ′))).

Since these elements actually lied in the KM,m,n-invariant subspace of the motivic
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cohomology group, when we apply the étale regulator and the map obtained via

Hochschild–Serre we obtain classes in

H1
(
Q,H2

ét(YG(KM,m,n)Q̄,H
[λ ]

Lv
(2− j− (t + t ′)))

)
.

Recall from (4.7.1) that, restricting to G∗, we find

YG∗(K∗M,m,n)' YG∗(K∗n )×Q µMpm .

We now recall a result that will be useful to use the above isomorphism to land in

Galois cohomology over cyclotomic extensions.

Proposition 4.8.9. [Nek18, Corollary 5.8]. Let U ⊂G(A f ) be the stabiliser of YG∗ .

We have a GQ×G(A f ) isomorphism

H i
ét(YG,Q̄,L )' IndG(A f )

U H i
ét(YG∗,Q̄, ι

∗L ),

where the natural embedding ι : YG∗ ↪→ YG is an open immersion.

We also recall, as in § 3.3.1, that for any variety X over Q we naturally have,

applying Remark 2.1.6, the following isomorphism of GQ-modules

H i
ét((X×Q µN)Q̄,L )' IndGQ

GQ(µN )
H i

ét(XQ̄,L ).

Moreover, by Shapiro’s lemma we have

H1(Q, IndGQ
GQ(µN )

V ) = H1(Q(µN),V ).

Applying the above proposition and these isomorphisms for N = Mpm and for the

GQ-module H2
ét(YG∗(K∗M,m,n)Q̄,TSym[k,k′]HLv(A )(2− j)), we can give the follow-

ing

Definition 4.8.10. For m≥ 0 we define a class

zΠ, j
Mpm,α ∈ H1(Q(µMpm),(V As

f )∗(− j))
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by letting

1
M ·


(

p j+t+t′σp
α

)m

(
1− p j+t+t′σp

α

) · (vα ◦prΠ∨)
(

z[k,k
′, j]

M,m,n

) if m≥ 1

if m = 0,

where σp is the arithmetic Frobenius at p in Gal(Q(µM)/Q).

4.8.3 Norm relations in Galois cohomology

These are the classes that, as we are going to show, form an Euler system for

V As
f ( j+1).

Theorem 4.8.11 (Vertical norm relations). Let j≤min(k,k′) and k,k′ ≥ 0. We have

cores
Q(µMpm+1)

Q(µMpm)

(
zΠ, j

Mpm+1,α

)
= zΠ, j

Mpm,α .

Proof. Since the pushforward by

H2
ét(YG∗(K∗n )×µMpm+1,TSym[k,k′]HLv(A ))

πm−→H2
ét(YG∗(K∗n )×µMpm,TSym[k,k′]HLv(A ))

induces corestriction in Galois cohomology, the result is an immediate corollary of

Theorem 4.8.2. This indeed can be rewritten as

(πm)∗(z
[k,k′, j]
M,m+1,n) =


U ′(p)
p j+t+t′

( U ′(p)
p j+t+t′ −1)

· z[k,k
′, j]

M,m,n
if m≥ 1

if m = 0,

seen as elements in H2
ét(YG∗(K∗M,m,n),TSym[k,k′]HLv(A )). Here U ′(p) is the Hecke

operator given by the double coset of
(

p−1 0

0 1

)
in H (K∗M,m,n\G∗(A f )/K∗M,m,n), and

we used the fact that, as explained in the proof [LLZ18, Proposition 4.3.4]4, the

Hecke operator of Theorem 4.8.2, acts on H2
ét(YG∗(K∗M,m,n)Q̄,TSym[k,k′](HLv(A )))

as U ′(p). The isomorphism (4.7.1) intertwines U ′(p) with U ′(p)× σ−1
p , where

4The pullback of the projection from YG∗ to YG intertwines U ′(p) on the cohomology of YG∗ with
p−(t+t ′)U ′(p) on the cohomology of YG, where U ′(p) is the normalised Hecke operator given by
pt+t ′U ′(p).
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U ′(p) ∈ H (K∗n\G∗(A f )/K∗n ) and σ−1
p is the arithmetic Frobenius at p in

Gal(Q(µM)/Q). Since vα projects to the U ′(p) = α eigenspace, the theorem

follows.

Theorem 4.8.12 (Tame norm relations). Let j≤min(k,k′) and k,k′≥ 0. We assume

that Π is not a twist of a base change lift of a cuspidal representation of GL2 /Q.

For any ` -Mp, ` 6∈ S, we have

cores
Q(µ`Mpm)

Q(µMpm)

(
zΠ, j
`Mpm,α

)
= Q(σ−1

` )zΠ, j
Mpm,α ,

where Q(X) = det(1− X Frob−1
` |V

As
f (1 + j)), i.e. Q(σ−1

` ) = P̀ (`−1− jσ−1
` ) for

P̀ (X) = det(1−X Frob−1
` |V

As
f ) as in Definition 2.4.8.

Proof. First of all we notice as above that the corestriction map is induced by push-

forward under the projection π : YG(K`M,m,n)→YG(KM,m,n). The class on the left is

then obtained in motivic cohomology by applying

S (A2
f ,Z)[ j+ t + t ′]⊗H (G(A f ))

A F k,k’,j
mot−−−−−→ H3

mot(YG(K`M,m,n),D(2− j))
π∗−→ H3

mot(YG(KM,m,n),D(2− j))

We have π∗◦A F k,k’,j
mot (φ⊗ξ ) = ∑k k ·A F k,k’,j

mot (φ⊗ξ ) = ∑k A F k,k’,j
mot (φ⊗(k ·ξ )),

where k runs over coset representatives of K`M,m,n/KM,m,n. In particular we find that

∑
k

k ·ξ`M,m,n = ξ
′
`M,m,n,

where ξ ′`M,m,n is equal to ξ`M,m,n at every component but at ` where we find

∑
k

k` ·
(
ch(K`,1)− ch(η`,1K`,1)

)
= ch(G(Z`))− ch(η`,1G(Z`)).

Hence both the left hand side and the right hand side of the claimed equality are

obtained as image of the same map vα ◦prΠ∨ ◦A F k,k’,j
mot

S (A2
f ,Z)[ j+ t + t ′]⊗H (G(A f ),Z)−→ H1(Q(µMpm),(V As

f )∗(− j)).
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They are obtained as image of elements that are the same at every component dif-

ferent from `, where the right hand side is the image of

`−1
`

(
(ch(`2Z`× (1+ `2Z`))⊗ (ch(G(Z`))− ch(η`,1G(Z`)))

)
and the left hand side the image of ch(Z2

`)⊗ ch(G(Z`)). The factor `− 1 appears

comparing Vol(W ) for the two different motivic classes, while 1
` comes from the

1
M -factor in the definition of the Galois cohomology classes. So it is enough to

compare the image of these two elements via the component at ` of the above map.

We will first compare the images through each of the the maps

Z : S (Q2
` ,Z)[ j+t+t ′]⊗H (G(Q`),Z)−→H1(Q(µMpm),(V As

f )∗(− j))⊗Π
∨
` −→Π

∨
` ,

(4.8.1)

where the last map is a G(A f )-equivariant projection to Π∨` , obtained by choosing

a basis element of H1(Q(µMpm),(V As
f )∗(− j)). Note that this Galois cohomology

group is a priori infinite dimensional, but since it is actually equal to the Galois co-

homology of some maximal unramified (outside a finite set of places) extension, we

are reduced to take this projection map for a finite number of basis elements. First

we assume that k+ k′− 2 j 6= 0. By definition and by Theorem 4.6.6, Proposition

4.6.7 and Theorem 4.8.6, we find that Z satisfies the condition of Corollary 4.5.20,

for k = k+ k′−2 j. Condition (?) follows from purity.

If M = 1,m = 0 we can apply then Corollary 4.5.20 with σ = Π`, together with

Remark 4.5.21 for h = j+ t + t ′. The factor of discrepancy is then L(σ ,h)−1. We

then apply Corollary 4.8.3 to get

L(σ ,h)−1 = L(Π`, j+ t + t ′)−1 = P̀ (`−1− j).

The multiplication by such scalar is carried when we take the projection via vα

into Galois cohomology and this is precisely what we were looking for (since σ` is

trivial in this situation).

If M > 1,m > 0, we apply this to every twist by Dirichlet characters
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modulo Mpm and apply Shapiro’s lemma. We are now comparing classes in

H1(Q(µMpm),(V As
f )∗(− j)). Since ρ := (V As

f )∗(− j) is a GQ-module, we have

Ind
GQ(µMpm )

GQ
(ρ) =

⊕
η ρ ⊗ η , where η varies over all characters of the quotient

GQ/GQ(µMpm) = Gal(Q(µMpm)/Q)' (Z/MpmZ)×. We hence find

H1(Q(µMpm),(V As
f )∗) =

⊕
η

H1(Q,(V As
f )∗⊗η).

Since σ` is the image of `−1 in Gal(Q(µMpm)/Q), if we write z∈H1(Q(µMpm),(V As
f )∗(− j))

as (zη)η , we have that σ
−1
` · z = (η(`) · zη)η . Hence we have reduced to prove

that the η-components of the classes we are considering differ by the factor

P̀ (`−1− jη(`)). We are then again in the case M = 1,m = 0. The character η

can be seen as an unramified character of Q×` for ` -Mp via class field theory and

it then defines a one dimensional representation of G∗(Q`) and of H(Q`) via the

determinant map. Hence the classes zη we are considering are locally at ` images

of the map (4.8.1) with the action of H(Q`) twisted by η . The space of such

maps factoring through the Siegel section will now be isomorphic, via the bijection

of Proposition 4.5.11, to a space of the form HomH(IH(χη ,ψη)⊗Π`,η), where

χψ · χΠ`
= 1. Theorem 4.5.1 implies that this space is again one dimensional, and

the construction of a basis carries through as in Section § 4.5, where in the choice

of the auxiliary character in Definition 4.5.2 ψ is replaced by ψη . We obtain the

same results, but with L(σ ⊗η ,h) in place of L(σ ,h). We then find, as we wanted,

L(Π`⊗η , j+ t + t ′)−1 = P̀ (`−1− j
η(`)).

We are left with the case k + k′ − 2 j = 0. The issue here is that the divi-

sor map from O×(Y )⊗C in (1) of Theorem 4.6.6 has a kernel. It consists of

non-generic representations of H(A f ). For any such representation τ we have that

HomH(A f )(τ ⊗Π,C) = 0 thanks to the assumption that Π is not a base change lift

from GL2 /Q and Proposition 4.8.4. Hence the local map factors through the Siegel

section also in this case and the proof follows as above.
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Remark 4.8.13. These classes hence satisfy the Euler system norm relations (NR)

as stated in the Introduction. In particular we proved the tame norm relations for all

primes ` 6∈ S. In [LLZ18] these were proved only for ` inert in F or ` split with the

condition of the two primes ideal in F above it being narrowly principal.

Remark 4.8.14 (Integral classes). In fact, one is interested in “integral classes”:

fixing a GQ-stable lattice T ⊂ (V As
f )∗(− j), we would like to have classes in

H1(Q(µm),T ) satisfying the same norm relations. To do that one works with in-

tegral Eisenstein classes, applies the map A F k,k’,j
mot and slightly modifies the pro-

jection map vα ◦ prΠ by choosing an appropriate Hecke operator that will define a

lattice as above. This is explained in details for the case G =GSp4 in [LSZ20a, §

8.4.6] and in the discussion following [LSZ20a, Proposition 10.5.2].

4.8.4 A remark on Beilison–Flach Euler system

It should now be clear to the reader that, proceeding in a completely analogous way,

one can reprove Euler system norm relations for Beilinson–Flach classes. These

elements were constructed in [LLZ14] and [KLZ15] and lay in Galois cohomology

of the representation attached to the Rankin–Selberg convolution of two modular

forms f ,g of weight k+2,k′+2 respectively. This means that in this case one works

with Π = Π f ⊗Πg, where Π f ,Πg are automorphic representations of GL2(A f ).

Hence we have, at all but finitely many places, a spherical representation Π` of

G(Q`) as in Definition 4.4.2, where now G = GL2×GL2. Using §4.4, one can

restate all the results of §4.5 for G; everything is already there, since we are in the

degenerate case where all primes split. One then defines a map

BF k,k’,j
mot : S (A2

f ,Q)[ j]⊗H (G(A f ),Z)−→ H3
mot(YG,TSym[k,k′]H (E )(2− j)),

similarly as in §4.7.1, where now TSym[k,k′]HL(E ) is a motivic sheaf over the

GL2×GL2 Shimura variety and the considered embedding ι at the level of alge-

braic groups is the diagonal embedding GL2 ↪→ GL2×GL2. In this case one uses

CG[k,k′, j]
mot : TSymk+k′−2 j H (E )→ ι

∗(TSym[k,k′]H (E ))(− j),
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as in [KLZ15, Corollary 5.2.2]. The local input is then the same as in §4.7.2,

again in the “all split primes” case. The proofs of all results in §4.8 carry

over, where in this setting the Galois representation (Vf ⊗ Vg)
∗ appears in

H2
ét(YG,Q̄,TSym[k,k′]H (E )(2)).

Both in this case and in the Asai–Flach one, the obtained classes are not exactly

the ones obtained pushing forward Eisenstein classes via “perturbed embeddings”.

The classes explicitly defined this way in [LLZ14] and [LLZ18] satisfy the expected

tame norm relations at ` only modulo (`− 1); one obtains an Euler system thanks

to a result by Rubin stating that these relations are enough to “lift” such classes to

an Euler system. This error term does not appear in this setting because at primes

` |M we already add a correction term in the definition of the local Hecke algebra

element ξM,m,n (see 4.7.3). This can be seen to be the right choice from the local

computation of Corollary 4.5.20.



Chapter 5

Kolyvagin systems and Selmer

groups of elliptic curves

In this chapter we study an application of the existence of Kolyvagin systems for

rational elliptic curves. More precisely, we generalise a result of [How04] which

gives a bound on the torsion part of a Selmer group attached to a rational elliptic

curve and a quadratic imaginary field K, subject to the non-vanishing of the bottom

class of such Kolyvagin system.

5.1 Main result and Heegner points
Let E/Q be an elliptic curve and p an odd prime of good ordinary reduction such

that E[p]GQ = {0}. We then work over an auxiliary quadratic imaginary field K

satisfying the following (slight generalisation of the) Heegner assumption

every prime of bad reduction of E and p split in K. (Heegner hypothesis)

We also assume that E[p]GK = {0} and that E does not have CM by K. Notice that

we can produce infinitely many K satisfying these conditions.

In this chapter we prove the following result

Theorem 5.1.1. Consider T = Tp(E) as above and let F be a Selmer structure.

Suppose there is a Kolyvagin system for (T,F ) (see Definition 5.2.8) such that

κ1 6= 0. Then H1
F (K,T ) is a free rank one module over Zp and there exists a finite
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Zp-module M such that

(i) H1
F (K,E[p∞])'Qp/Zp⊕M⊕M,

(ii) lengthZp
(M)≤ lengthZp

(H1
F (K,T )/Zp ·κ1)+ t,

where t is a non-negative integer depending only on Im(GK → GL(Tp(E)) '

GL2(Zp)) and is equal to zero when such representation is surjective.

Remark 5.1.2. Notice that the theorem applies also in the case not covered in

[How04] where the elliptic curve E admits a rational p-isogeny with non-cyclic

kernel. Moreover the constant t can be thought as measuring how much the repre-

sentation GK → GL(Tp(E))' GL2(Zp) fails to be surjective.

5.1.1 Heegner points

We now recall the existence of a Kolyvagin system for T and a certain choice of F ,

such that the bottom class is non-zero if and only if the analytic rank of E/K is one.

Such Kolyvagin system is built using Heegner points.

The construction of these classes is carefully explained in [How04, § 1.7]. We

only sketch the construction for the sake of completeness and we refer the interested

reader to op. cit. for more details. We let P[m] be the Heegner point of conductor

m. It is constructed as follows. Thanks to the Heegner hypothesis we can fix an

integral ideal N of OK such that OK/N ∼= Z/NZ, where N is the conductor of E.

For ` a prime which is inert in K we denote by a` ∈ Z the trace of the Frobenius at

` on Tp(E). We define an ideal I` ⊂ Zp to be the smallest ideal containing `+1 for

which Frob` acts with characteristic polynomial X2−1. Therefore I` = (a`, `+1).

For every integer n square-free product of primes as above, we let hn to be a point

on the modular curve X0(N) corresponding to the cyclic N-isogeny

hn =
[
C/On→ C/(On∩N)−1

]
,

where On is the order of conductor n in OK . The point hn is defined over K[n], the



5.1. Main result and Heegner points 171

ring class field of K of conductor n. Fix a modular parametrisation

φ : X0(N)→ E

and let P[n] := φ(hn) ∈ E(K[n]). These points satisfy the following norm relations

for ` - n:

NmK[n`]/K[n]P[n`] = a` ·P[n].

In order to produce the Kolyvagin system, one applies a derivative operator very

similar to the one considered in the Introduction (see (Kolyvagin derivative)). If n

is as above we let G (n) := Gal(K[n]/K) and

G(n) := Gal(K[n]/K[1]).

For every prime `, fix σ` a generator of G(`) and define the derivative operator

D` ∈ Zp[G(`)] as

D` =
`

∑
i=1

iσ i
`,

We then let Dn = ∏`|n D` ∈ Zp[G(n)]. Similarly as in (1.2.1), one finds

(σ`−1)D` = `+1−Norm.

Let S be a set of representatives for G(n)⊂ G (n), and let

κ̃n = ∑
s∈S

sDn(P[n]) ∈ E(K[n]).

Let In = ∑`|n I` ⊂ Zp, where I` is the ideal (` + 1,a`(E)) ⊂ Zp. One then

shows, using the above congruence relations, that the image of the class in

E(K[n])/InE(K[n]) is fixed by G (n) and hence, also its image under the Kummer

map in H1(K[n],T/InT ). Now consider the restriction map

H1 (K,T/InT ) res−→ H1 (K[n],T/InT )G (n) .
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In [How04], the class κn is defined to be the preimage under this map of the class

built above in H1 (K[n],T/InT )G (n). In op. cit. the fact that this map is an isomor-

phism follows from the representation T being irreducible and it is the only point in

the construction where this assumption is invoked. However, this holds true also in

our setting because

H0(K[n],T/InT ) = H0(K[n],E[In]) = 0.

This follows from the fact that E[p](K[n]) = 0. This is a consequence of K[n] being

disjoint overQ from extensions generated by p-torsion points of E. Such extensions

are indeed unramified outside p and the places dividing N, the conductor of E.

Since n is coprime to N p and divisible only by inert primes, the extension K[n]/Q

is unramified at places dividing N p.

Now consider the Selmer structure F on V = Tp(E)⊗Qp given by the unram-

ified local condition (see § 5.2.1) at places of K not dividing p and at v|p take the

image of the local Kummer map

E (Kv)⊗Qp→ H1(K,V )

Define the local conditions on Tp(E) and E [p∞]∼=V/Tp(E) by propagating F . As

shown for example in [Rub00, Proposition I.6.8], this Selmer structure gives rise to

the usual p-Selmer group considered in 1.5.1, namely

H1
F (K,Tp(E)) = Selp(E/K), H1

F (K,E [p∞]) = Selp∞(E/K).

Finally, one considers some modified Selmer structures F (n) (see Definition

5.2.7 below). It can be shown (see [How04, Lemma 1.7.3 et seq.]) that the classes

κn actually lie in the corresponding Selmer groups, i.e.

κn ∈ H1
F (n)(K,T/InT )

and they satisfy the Kolyvagin relations, defined in (K) below. In other words,
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applying Gross–Zagier’s result (1.5.2) and Theorem 5.1.1 we find

Corollary 5.1.3. Let E/Q be an elliptic curve and p a prime of good ordinary

reduction such that E[p]GQ = {0}. Let K be a quadratic imaginary field chosen as

above. If the analytic rank of E/K is one, then Selp(E/K) is a free rank one module

over Zp and there exists a finite Zp-module M such that

(i) Selp∞(E/K)'Qp/Zp⊕M⊕M,

(ii) lengthZp
(M)≤ lengthZp

(Selp(E/K)/Zp ·κ1)+ t for some t ∈ Z≥0 as in The-

orem 5.1.1.

5.1.2 Iwasawa theoretic applications

As mentioned in Remark 1.5.2, Theorem 5.1.1 is proved in [CGLS20] for twists of

Tp(E) obtained as follows. Let Γ :=Gal(K∞/K) be the Galois group of the anticy-

clotomic Zp-extension of K, let Λ = Zp[[Γ]] be the anticyclotomic Iwasawa algebra

and P 6= pΛ a height one prime ideal of Λ. Consider R the integral closure of the

ring Λ/P and the GK-representation T = Tp(E)⊗Zp R(αP), where the character αP

is given as follows:

αP : GK � Γ→ Λ→ R.

The existence of a Λ-adic Heegner point Kolyvagin system, implies the existence of

a Kolyvagin system (for suitable Selmer structures) also for such T . Let us denote

the bottom class with κP. One then proves that the torsion part of the Selmer group

for V/T is MP⊕MP, where

lengthZp
(MP)≤ Ind(κP)+(t + eP)(rkZp R), (5.1.1)

for some eP ≥ 0, which depends on P.

In order to prove one divisibility in the Heegner point Iwasawa main conjec-

ture, one needs to prove inequalities for height one prime ideals P dividing the

Λ-ideals involved in the main conjecture. However, one cannot apply Theorem

5.1.1 directly to T = Tp(E)⊗Zp R(αP). Taking P = (g) such a prime, one proves
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the desired inequality by taking the auxiliary ideals Pm = (g+ pm) and considering

a limit for m→ ∞. If m� 0, Pm is also a height one prime ideal and it satisfies

rkZp(Λ/P) = rkZp(Λ/Pm) and eP = ePm . Hence the error term appearing in the in-

equalities (5.1.1) for T = Tp(E)⊗Zp R(αPm) is independent on m and it disappears

when one divides by m and takes the limit for m→ ∞.

5.2 Selmer groups and Kolyvagin systems

5.2.1 Selmer structures and Selmer groups

Let F be a number field. Let L be a finite extension of Qp with ring of integers

R and uniformiser ϖ and consider M an R-module with continuous action of GF ,

the absolute Galois group of F . We consider also a triple (V,T,W ) where V is a

finite dimensional L-vector space with continuous GF -action, T ⊂V is a GF -stable

R-lattice and W =V/T .

Definition 5.2.1. A Selmer structure F on M is a choice of local conditions

H1
F (Fw,M) ≤ H1(Fw,M) for every place w in a fixed finite set of places Σ(F )

containing p, all archimedean places and all the places at which M is ramified.

Examples of such local conditions are

H1
F (Fw,M) =



H1
un(Fw,M) := ker

(
H1(Fw,M)→ H1(Iw,M)

)
unramified at w,

' H1(GFw/Iw,MIw)

H1(Fw,M) relaxed at w,

0 strict at w.

Given a Selmer structure one defines the associated Selmer group

H1
F (F,M) := ker(H1(FΣ(F )/F,M)→ ∏

w∈Σ(F )

H1(Fw,M)/H1
F (Fw,M)),

where FΣ(F ) is the maximal extension of F unramified outside Σ(F ).

A Selmer structure F on V defines Selmer structures on T and W taking re-

spectively the preimage and image of H1
F (Fw,V ) via 0→ T →V →W → 0.
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Definition 5.2.2. Given a Selmer structure F on M and a finite set of primes S we

define the Selmer structure F S on M where Σ(F S) is given by Σ(F )∪S, the local

condition at primes not in S is unchanged and the one at primes in S is the relaxed

condition, namely

H1
F S(Fw,T ) =

H1(Fw,T ) if w ∈ S

H1
F (Fw,T ) if w 6∈ S,

Example 5.2.3. The Bloch-Kato Selmer group, for a p-adic representation V as

above satisfying some assumptions, is defined with the finite local conditions

H1
f (Fw,V ), where

H1
f (Fw,V ) =


H1

un(Fw,V ) if w - p∞

ker
(
H1(Fw,V )→ H1(Iw,V ⊗Qp Bcris)

)
if w | p

0 if w | ∞.

If we have a Selmer structure F on M, one can define a dual Selmer structure

F ∗ on the Pontryagin dual M∗ = Homcont(M,Qp/Zp(1))1 using local duality and

letting

H1
F ∗(Fw,M∗) := the annihilator of H1

F (Fw,M) via local duality.

If we have F ,G two Selmer structures on M, we write F ≤ G if H1
F (Fw,M) ⊆

H1
G (Fw,M) for every w. Local duality gives a perfect bilinear pairing

〈−,−〉w : H1
G (Fw,M)/H1

F (Fw,M)×H1
F ∗(Fw,M∗)/H1

G ∗(Fw,M∗)→Q/Z.

Theorem 5.2.4 (Poitou-Tate global duality). Given F ≤ G two Selmer structures

1The notation (−)∗ for the Pontryagin dual of (−) should not be confused with the same one
used in the previous Chapters to denote the standard dual of a representation.
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on M, there are exact sequences

0→ H1
F (F,M)→ H1

G (F,M)
loc−→

⊕
w

H1
G (Fw,M)/H1

F (Fw,M)

0→ H1
G ∗(F,M

∗)→ H1
F ∗(F,M

∗)
loc−→

⊕
w

H1
F ∗(Fw,M∗)/H1

G ∗(Fw,M∗)

and the images on the localisations maps are orthogonal complements with respect

to the pairing ∑w〈−,−〉w, where 〈−,−〉w are the local Tate pairings. This yields

the duality exact sequence

0→H1
F (F,M)→ H1

G (F,M)
loc−→

⊕
w

H1
G (Fw,M)/H1

F (Fw,M)
loc∨−−→ H1

F ∗(F,M
∗)∨→

→ H1
G ∗(F,M

∗)∨→ 0, (LES)

where loc∨ is the dual of the localisation map in the second short exact sequence

above, identifying H1
G ∗(Fw,M∗) with (H1(Fw,M)/H1

G (Fw,M))∨ via local Tate dual-

ity (and similarly for H1
F ∗(Fw,M∗)).

5.2.2 Kolyvagin systems

Let F be a number field and T be an R-module with a continuous GF -action.

Take w a finite prime. Recall the singular quotient H1
s (Fw,T ) which is given by

H1(Fw,T )/H1
f (Fw,T ). We have the following result.

Proposition 5.2.5. Assume w does not divide p and T is unramified at w. Letting

kw be the residue field of Fw, if |k×w | ·T = 0, then there are canonical isomorphisms

H1
f (Fw,T )' T/(Frobw−1)T H1

s (Fw,T )⊗ k×w ' T Frobw=1

Proof. See [MR04, Lemma 1.2.1].

Definition 5.2.6. For w as in the previous Proposition, if GFw acts trivially on T

we define the finite-singular comparison map to be the isomorphism given by the
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canonical isomorphisms above

φ
fs
w : H1

f (Fw,T )' T ' H1
s (Fw,T )⊗ k×w .

More precisely φ fs
w is given by the composition of

H1
f (Fw,T )

evFrobw−−−−→ T, T
fw←− H1

s (Fw,T )⊗ k×w

κ 7→ κ(Frobw), κ(σα)←[ κ⊗α,

where σα ∈Gal(F̄w,Fun
w ) = Iw, the inertia subgroup of GFw , denotes the Artin sym-

bol of any lift of α to Fw.

Definition 5.2.7. Given a Selmer structure F on T and a triple of positive integers

a,b,c, we define a Selmer structure F a
b (c) on T where Σ(F a

b (c)) is given by Σ(F )

together with all primes dividing abc and

H1
F a

b (c)
(Fw,T ) =



H1(Fw,T ) if w | a

0 if v | b

H1
tr(Fw,T ) if w | c

H1
F (Fw,T ) if w - abc,

where H1
tr(Fw,T ) denotes the transverse condition submodule (see [How04, §1.1]).

To simplify the notation, we denote by F (n) the Selmer structure F 1
1 (n).

We now recall that, under the assumptions of Definition 5.2.6, the singular

quotient projects isomorphically to the transverse condition submodule. This gives

a splitting

H1(Fw,T ) = H1
f (Fw,T )⊕H1

tr(Fw,T ).

Moreover H1
f (Fw,T ) and H1

f (Fw,T ∗) (respectively H1
tr(Fw,T ) and H1

tr(Fw,T ∗)) are

exact orthogonal complements under the local duality pairing. See [MR04, Lemma

1.2.4, Proposition 1.3.2].

From now on, we go back to F = K, a quadratic imaginary field as in the
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previous sections.

As in [How04, § 1.2, Definition 1.2.1], we denote by L0 = L0(T ) the set of

inert primes of K which do not divide p or any prime at which T is ramified. For

any ` ∈L0 we let:

- I` be the smallest ideal of R containing `+ 1 for which the Frobenius at the

prime λ | ` in K acts trivially on T/I`T ;

- G` be the quotient k×` /F
×
` , where k` is the residue field of λ | `;

- N0 be the set of squarefree products of primes in L0 and for n ∈N0, let

In = ∑
`|n

I` ⊂ R, Gn =
⊗
`|n

G`.

By convention, let I1 = 0 and G1 = Z.

Definition 5.2.8. By a Selmer triple (T,F ,L ) we mean a choice of Selmer struc-

ture F on T and a subset L ⊂L0 disjoint from Σ(F ). We let N =N (L ) be the

set of squarefree products of primes in L , with the convention of 1 ∈N . A Koly-

vagin system for (T,F ,L ) is a collection of classes κn ∈ H1
F (n)(K,T/InT )⊗Gn

such that

φ
fs
` (loc`(κn)) = loc`(κn`). (K)

Remark 5.2.9. As explained in [How04, § 1.6], a Kolyvagin system for (T,F ,L )

gives a Kolyvagin system for (T/ϖNT,F ,L (N)), where

L (N) := {` ∈L : I` ⊂ pNR}.

5.3 Structure theorem and error terms

5.3.1 Howard’s results on the structure of Selmer groups

Consider an elliptic curve E/Q as in the introduction, K a quadratic imaginary field

satisfying (Heegner hypothesis). Let

T = Tp(E) where T̄ GK = 0.
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Consider the Selmer structure F on V = Tp(E)⊗Qp given by the unramified lo-

cal condition at places of K not dividing p and at v|p take the image of the local

Kummer map

E (Kv)⊗Qp→ H1(K,V )

Define the local conditions on Tp(E) and E [p∞]∼=V/Tp(E) by propagating F .

We now specify the set of primes L we will consider. For n ≥ 1, we let

K(T/pN) the field extension of K such that GK(T/pN) acts trivially on T/pNT . We

let

LN := {` : T is unramified at ` and the conjugacy class of Frob`

in Gal(K(T/pN)/Q) is equal to the class of the complex conjugation τ}.

Čebotarev density theorem implies that this set has positive density. Notice that if

` is in LN , it is inert in K. Moreover since the Frobenius at the prime λ | ` of K is

the square of Frob`, the congruence of characteristic polynomials means that it acts

trivially on T/pNT . We hence have that for every ` ∈LN , the ideal I` is contained

in pNZp. In other words, letting L :=
⋃

N≥1 LN ,

LN ⊆L (N). (5.3.1)

Notice that the Selmer triple (T,F ,L ) satisfies all the hypotheses in [How04,

§1.3], but H.1 and H.2. We instead only have that T̄ GK = 0, but allow T̄ to be a

reducible GK-representation, where T̄ = T/pT . Because of these properties, every-

thing Howard proves in sections 1.3-1.4-1.5 holds true also in our setting. We recall

what we will need for the proof of the bound on the Selmer group.

Lemma 5.3.1. We have isomorphisms for every 0≤ i≤ N

H1
F (K,T/pNT )[pi]' H1

F (K,T/pNT [pi])' H1
F (K,T/piT ).

H1
F (K,T/pNT )[p]' H1

F (K, T̄ ).
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Proof. This follows as in [MR04, Lemma 3.5.4], where only the assumption T̄ GK =

0 is needed.

Proposition 5.3.2. For every N ≥ 0 and n ∈N , there exists a finite Zp/pN-module

MN(n) such that

H1
F (n)(K,T/pNT )' (Zp/pN)ε ⊕MN(n)⊕MN(n),

where ε ∈ {0,1} is independent on both N and n.

Proof. By [How04, Theorem 1.4.2, Lemma 1.5.1], for every n ∈N there exist a

Zp-module MN(n) and ε(n,N) ∈ {0,1} such that

H1
F (n)(K,T/pNT )' (Zp/pN)ε(n,N)⊕MN(n)⊕MN(n).

In order to show that ε(n,N) does not depend on n and N, one proves that the parity

of dimFp(H
1
F (n)(K,T/pNT )[p]) is constant and independent on n and N. We now

need the following result.

Lemma 5.3.3. ([How04, Lemma 1.5.3]). Let ρ(n)± := dimFp(H
1
F (n)(K, T̄ )±).

Then:

(i) If loc`(H1
F (n)(K, T̄ )±) 6= 0, then ρ(n`)± = ρ(n)±−1.

(ii) If loc`(H1
F (n)(K, T̄ )±) = 0, then ρ(n`)± = ρ(n)±+1.

Proof. We briefly sketch Howard’s proof. Consider a prime ` ∈ L coprime to n

and the exact sequences

0→ H1
F (n)`

(K, T̄ )→ H1
F (n)(K, T̄ )→ H1

f (K`, T̄ )

0→ H1
F (n)(K, T̄ )→ H1

F (n)`(K, T̄ )→ H1
s (K`, T̄ ).

The image of the last arrows are exact orthogonal under local Tate pairing by

global duality and the complex conjugation splits H1
f (K`, T̄ ) and H1

s (K`, T̄ ) into
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one-dimensional eigenspaces for the action of the complex conjugation. Consider

also the exact sequences

0→ H1
F (n)`

(K, T̄ )→ H1
F (n`)(K, T̄ )→ H1

tr(K`, T̄ )

0→ H1
F (n`)(K, T̄ )→ H1

F (n)`(K, T̄ )→ H1
f (K`, T̄ ),

where again by global duality the images of the last arrows are exact orthogonal.

We find that if the image of H1
F (n)(K, T̄ )± under the localisation map is not zero,

then H1
F (n)(K, T̄ )±=H1

F (n)`(K, T̄ )±. So we have H1
F (n)`

(K, T̄ )±=H1
F (`n)(K, T̄ )±,

which proves (i).

For the second statement, Howard shows that the localisation of H1
F (n)`(K, T̄ )±

at ` is a maximal isotropic subspace of H1 (K`, T̄ )
± and that the only two such

subspaces are H1
f (K`, T̄ )

± and H1
tr (K`, T̄ )

±. This tells us that H1
F (n)`(K, T̄ )± is

equal either to H1
F (n)(K, T̄ )± or to H1

F (n`)(K, T̄ )±. The above argument implies that

H1
F (n)`(K, T̄ )± = H1

F (n)(K, T̄ )± contradicts the assumption loc`(H1
F (n)(K, T̄ )±) =

0. So we have H1
F (n)`(K, T̄ )± = H1

F (n`)(K, T̄ )±, which implies the result using

global duality as above.

Since by Lemma 5.3.1, H1
F (n)(K,T/pNT )[p] ' H1

F (n)(K, T̄ ), the lemma im-

plies that the parity of dimFp(H
1
F (n)(K,T/pNT )[p]) does not depend on n.

5.3.2 Čebotarev density theorem argument

In order to use the Kolyvagin classes to bound the Selmer group, we exploit the

action of the complex conjugation on the Selmer group. Since we have a natural

action of complex conjugation τ on Tp(E), we have an action of it on H1(K,T ) and

we write

H1
F (n)(K,T ) = H1

F (n)(K,T )+⊕H1
F (n)(K,T )−,

for the subspaces where the complex conjugation acts as +1 and −1 respectively.

Similarly, for any finite Zp-module M with an action of τ , we will write M = M+⊕



5.3. Structure theorem and error terms 182

M−. From now on, for any c ∈M we will also write

ord(c) = min{m≥ 0 : pm · c = 0}.

The following result is due to Nekovář (see [Nek07, § 7.5.1]).

Proposition 5.3.4. For any pair of classes c± ∈H1(K,T/pNT )± laying in different

eigenspaces with respect to the action of complex conjugation, there exist infinitely

many primes ` ∈LN , such that we have

ord(loc`(c±))≥ ord(c±)− e,

where e is a constant which depends only on the image of Zp[GK] in GL2(Zp) and

is independent of N. Moreover if T is residually irreducible, e = 0 and we therefore

have an equality ord(loc`(c±)) = ord(c±).

Proof. The error term e is the sum of the constants C2 and C3 defined in [Nek07,

§ 6]. We briefly recall how these are defined and how to use Čebotarev density

theorem to find the primes satisfying the condition in the statement.

It is well known that Z×p ∩ Im(GK → GL2(Zp)) is open in Z×p . This implies

that there is u ∈ Z×p −{1} such that for every N, u mod pN lies in the center of UN ,

where

UN = Gal(K(E[pN ])/K)⊂ AutZp(T/pN).

We let C2 := vp(u−1). We have, as in the proof of [Nek07, Proposition 6.1.2], that

pC2 ·ker
(
H1(K,T/pN)→ H1(K(E[pN ]),T/pN)UN

)
= 0 for every N. (5.3.2)

Notice that, if we have Im(GK → GL2(Zp)) = GL2(Zp), then we can take u 6= 1

mod p, giving C2 = 0.

If V is an absolutely irreducible representation of GK , Nekovář defines in

[Nek07, Proposition 6.2.2], the constant C3 to be such that

Im
(
Zp[GK]→ EndZp(T )

)
⊇ pC3EndZp(T ). (5.3.3)
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Again, if we have surjectivity, then C3 = 0.

What Nekovář shows at the beginning of [Nek07, (7.5.1)], using [Nek07,

Corollary 6.3.4] and Čebotarev density theorem, is that, given c+,c− ∈

H1(K,T/pNT ), there exist infinitely many primes `, where ` is a Kolyvagin prime,

such that

ord(loc`(c±))≥ ord(c±)−C2−C3.

We briefly recall how the proof goes. Let d± := ord(c±)−C2−C3. If d+ = d− = 0,

then there is nothing to prove. So assume at least one of them is not zero. Let

L = K(E[pN ]). By (5.3.2), the kernel of the restriction map

H1(K,T/pNT ) res→ H1(L,T/pNT ) = HomGK(GL,T/pNT ).

is annihilated by pC2 . Denote by f± the image under this map of c±. We hence

have

ord( f±)≥ ord(c±)−C2.

Moreover by (5.3.3) the Zp-span of the image of f± contains pC3End(T ) · f±(GL).

Since ord( f±) ≥ ord(c±)−C2, we have that the Zp-span of the image of f± con-

tains pN−ord(c±)+C2+C3T/pNT . In particular, if g± is the projection of f± to the

summand (T/pNT )± ∼= Zp/pN , then the Zp-span of the image of g± contains a

submodule isomorphic to Zp/pd± . Since at least one among d+ and d− is not zero,

then we cannot have that both f+ and f− are trivial.

Let H ⊂ GL be the intersection of the kernels of f+ and of f−, and let Z =

GL/H. Note that H 6= GL since some f± is non-trivial, so Z is a non-trivial torsion

Zp-module. Note also that Z is stable under the action of complex conjugation since

each f± is. In particular, Z = Z+⊕Z−.

We have g±(Z−) = 0, since f± ∈ Hom(GL,T/pNT )±. So we find g±(Z) =

g±(Z+) and the Zp-span of g±(Z+) contains a submodule isomorphic to Zp/pd± .

It follows that Z+ is non-trivial.

If d± > 0, let W± ⊂ Z+ be the proper subgroup such that g±(W±) =

pN−(d±−1)(T/pNT )±. If d±= 0, let W±= 0. Then both W+ and W− are proper sub-
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groups of Z+ (since there exists some z ∈ Z+ such that g±(z) ∈ pN−d±(T/pNT )±).

It follows that W+∪W− 6= Z+. Let z ∈ Z+, z 6∈W+∪W−. By definition, we have

ord(g±(z))≥ d±. (5.3.4)

Let M = QH , so that Gal(M/L) = Z. Let g = τz ∈ GQ, and let ` - N p be any

prime such that both c+ and c− are unramified at ` and Frob` = g in Gal(M/Q).

Čebotarev density theorem implies there are infinitely many such primes. Since Z

fixes E[pN ] and K, Frob` acts as τ on both E[pN ] and K. This means that a`(E) ≡

`+1≡ 0 mod pN and ` is inert in K. That is, ` ∈LN .

Since ` is inert in K, the Frobenius element at ` in Gal(Q̄/K) is Frob2
` . Consider

the restriction of c± to K`. Since c± is unramified at `, loc`(c±) is completely

determined by the image c±(Frob2
`) in E[pN ]/(Frob2

`−1)E[pN ]. By the choice of

`, Frob2
` acts trivially on E[pN ], so E[pN ]/(Frob2

`−1)E[pN ] = E[pN ]. Moreover,

Frob2
` = g2 = z2 ∈ Gal(M/L), so c±(Frob2

`) = f±(z2) = 2g±(z) ∈ E[pN ]±, where

the second equality follows as above from the fact that the projection of f± to

E[pN ]∓ maps z ∈ Z+ to zero. Since p is odd, (5.3.4) yields

ord(loc`(c±))≥ d±.

Letting e =C2 +C3, we have proved the desired result.

5.4 Bounding the Selmer group
In this section we prove Theorem 5.1.1. We assume from now on that there exists a

Kolyvagin system (κn)n for our triple (T,F ,L ) and that κ1 6= 0. Denoting by κ
(N)
1

the image of κ1 in H1
F (K,T/pNT ), we have that for N big enough κ

(N)
1 is different

from zero. For a finitely generated Zp-module M and x ∈M, we define the index of

x in M by

Ind(x,M) := max{m≥ 0 : x ∈ pmM}.

Notice that

H1
F (K,T ) = lim←−H1

F (K,T/pNT )
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and the index of κ1 in H1
F (K,T ) is equal to the index of κ

(N)
1 in H1

F (K,T/pNT ) for

N big enough. Since κ1 is not zero, the Zp-rank of H1
F (K,T ) is at least one.

Recall that from Remark 5.2.9 and (5.3.1) we get a Kolyvagin system for

(T/pNT,F ,LN), which by abuse of notation we will still write as (κn)n. The

class κn is an element of H1
F (n)(K,T/InT ), but thanks to (5.3.1), we can view it as

a class in H1
F (n)(K,T/pNT ) for every n squarefree product of primes in LN . We

now write any class c in H1
F (n)(K,T/pNT ) as

c = (c+,c−)

where we denoted by (−)± the component of the image of the class lying in the

±-eigenspace with respect to complex conjugation.

Moreover, for every prime ` ∈ LN , we fix a generator of α` ∈ G`, so that

we have isomorphisms H1
F (n)(K,T/pNT )⊗Gn ' H1

F (n)(K,T/pNT ) for every n

square-free product of primes in LN . Under this identification, we can view κn as

an element of H1
F (n)(K,T/pNT ). We rewrite the map φ fs

` as follows

φ
fs
` : H1

f (Kw,T/pNT )
evFrobw−−−−→ T/pNT

fw←− H1
s (Kw,T/pNT )⊗ k×w ' H1

s (Kw,T/pNT )

κ 7→ κ(Frobw), κ
′(σ`)←[ κ ′⊗α`←[ κ ′,

where we denoted by σ` the Artin symbol σα`
. Then the Kolyvagin relation (K) can

be rewritten as

loc`(κn)(Frobw) = loc`(κn`)(σ`).

Finally we show that φ fs
` switches the eigenspaces of the complex conjugation,

i.e. if κ ∈ H1
f (Kw,T/pNT )±, then φ fs

` (κ) ∈ H1
s (Kw,T/pNT )∓, so that we have

φ
fs
` (loc`(κ±n )) = loc`(κ∓n`) for ` - n. (sign)

More precisely the above relation follows from the following

Lemma 5.4.1. Denote by τ the automorphism defined by the action of complex
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conjugation on cocycles. For primes ` ∈ LN , using the above identifications, we

have

φ
fs
` ◦ τ(κ) =−τ ◦φ

fs
` (κ),

for every κ ∈ H1(Kv,T/pNT ), where Kv is the completion of K at v | `.

Proof. Recall that φ fs
` is defined as ev−1

σ`
◦ evFrobv . We will show that evFrobv ◦ τ =

evFrobv and ev−1
σ`

=−τ ◦ ev−1
σ`

.

First, we show that κ(τ Frobv τ) = κ(Frobv). From the fact that ` ∈ LN ,

we have that τ and Frob` are in the same conjugacy class in Gal(Kv/Q`), hence

they are equal and we can write τ = Frob` h for some h ∈ GKv . We also have

Frob−1
` Frobv Frob` = Frobv. We hence find that for every κ ∈ H1

f (Kv,T/pNT ),

κ(τ−1 Frobv τ) = κ(h−1 Frobv h) = κ(Frobv), where in the last equality we used

the fact that the cocycle κ is actually a homomorphism since GKv acts trivially on

T/pNT .

The second relation will follow from the fact that, since ` ≡ −1 mod pN , the

action of conjugation of Frob` on the inertia subgroup Gal(K̄v/Kun
v ) is given by

−1. Hence, if κ ∈ H1
s (Kv,T/pNT ) we find κ(τσ`τ) = κ(h−1 Frob−1

` σ`Frob` h) =

κ(h−1(σ`)
−1h) =−κ(σ`), proving the second relation.

Proposition 5.4.2. Let s1 be the index of κ1 in H1
F (K,T ) and N � 0. Consider

two classes c± ∈ H1
F (K,T/pNT )±. Assume that the order of κ

+
1 is the order of

(κ+
1 ,κ−1 ) ∈H1

F (K,T/pNT )±. Then ps1+2e ·c− = 0 and ps1+4e ·c+ ∈ 〈κ+
1 〉, where e

is the constant of Proposition 5.3.4.

Proof. First of all we notice that, since κ1 is divisible by s1 and N� 0, we have

ord(κ+
1 ,H1

F (K,T/pNT )) = N− s1. (5.4.1)

Let us first consider c−. We can then apply Proposition 5.3.4 to find a prime `

such that the inequalities on the orders of the localisations at ` hold for κ
+
1 and c−.

Applying (LES) for the pair F` ≤F and noticing that (T/pNT )∗ is identified with
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T/pNT via the Weil pairing, we have an exact sequence

H1
F (K,T/pNT )−→ H1

f (K`,T/pNT )−→ (H1
F `(K,T/pNT )−)∨

and hence the image of the first map is isomorphic to the cokernel of

H1
F `(K,T/pNT )− → H1

s (K`,T/pNT )−. Notice that κ
−
` ∈ H1

F `(K,T/pNT )− and

the order of loc`(κ−` ) is equal to the order of loc`(κ+
1 ) because of (K), (sign)

and the fact that the finite singular homomorphism is an isomorphism. Hence

ord(loc`(κ−` )) = ord(κ1) − e + t =: x for some t ≥ 0. So we have that the

image of H1
F `(K,T/pNT )− → H1

s (K`,T/pNT )− contains pN−xZp/pN . Since

H1
s (K`,T/pNT )− ' Zp/pN , the cokernel of the map is isomorphic to Zp/pN−y

for y ≥ x. In particular, since N − (ord(κ+
1 )− e) ≥ N − x ≥ N − y, we find that

pN−(ord(κ+
1 )−e) · loc`(c−) = 0. Moreover, using (5.4.1), we get ps1+e · loc`(c−) = 0.

This implies, from our choice of `, that ps1+2e · c− = 0.

We now consider κ
+
1 ,c+ ∈ H1

F (K,T/pNT )+. Let us write κ := p−s1κ
+
1 . The

order of κ in H1
F (K,T/pNT ) is equal to N. We can take a prime ` such that

ord(loc`(κ))≥ N− e.

We let z be such that the image of the localisation map from H1
F (K,T/pNT )+ is

isomorphic toZp/pz ·c0. We can then write loc`(κ)= px ·c0 and loc`(pec+)= py ·c0

for some x,y≤ z. We claim that y≥ x, so that

loc`(pec+− py−x
κ) = 0. (5.4.2)

This holds since if y � x, then ord(loc`(pec+)) = z− y  z− x = ord(loc`(κ)) ≥

N−e, implying that pN−e · loc`(pec+) = pN · loc`(c+) 6= 0 which is a contradiction.

Let c′ := pec+− py−xκ . Condition (5.4.2) means that c′ ∈ H1
F`
(K,T/pNT )+ ⊂

H1
F (`)(K,T/pNT )+. We apply Proposition 5.3.4 to find another prime `′ such that

the inequalities on the orders of the localisations at `′ hold for κ
−
` and c′. Proceeding

as above, we find that pN−(ord(κ`)−e) · loc`′(c′) = 0. Since ord(κ`)≥ ord(loc`(κ`)) =
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ord(loc`(κ1))

N− (ord(κ`)− e)≤ N− (ord(loc`(κ1))− e)≤ N− (ord(κ1)−2e).

Hence we obtained, pN−(ord(κ1)−2e) · loc`′(c′) = 0. We proceed again as above, find-

ing that ps1+3e · c′ = 0, which in turn yields ps1+4e · c+ ∈ 〈κ+
1 〉.

Corollary 5.4.3. For N  s1 +4e we have

H1
F (K,T/pNT )' Zp/pN⊕

(
<∞⊕
i=1

Zp/pmi

)
,

where N  s1 + 4e ≥ mi for every i. In particular, ε = 1 and for N big enough

ptMN(1) = 0 for t = s1 +4e� N.

Proof. Let e′ = 4e. The proposition tells us, in particular, that for N big

enough ps1+e′H1
F (K,T/pNT ) is cyclic and non-zero. Writing H1

F (K,T/pNT ) '⊕<∞

i=0Zp/pmi we have that m0− s1− e′  0 and mi ≤ s1 + e′ for every i ≥ 1. From

the fact that the rank of H1
F (K,T ) is at least one, we know that we must have an

element of order N, we have m0 = N (having taken N  s1 +4e).

In order to deduce ε = 1 and that the maximal order of an element in MN(1) is

strictly less than N we use again the fact that ps1+e′H1
F (K,T/pNT ) is cyclic. If we

had ε = 0 or an element of order N in MN(1) then we would have a subgroup

Zp/pN · c0⊕Zp/pN · c1 ⊂ H1
F (K,T/pNT ).

This is not possible because we have just shown that there is only one cyclic sub-

group of H1
F (K,T/pNT ) of order N.

Remark 5.4.4. Notice that the corollary in particular implies H1
F (K,T )∼=Zp, since

the assumption T̄ GK = 0 implies that H1
F (K,T ) is torsion-free, by [MR04, Proposi-

tion 2.1.5]. So we have proved the first statement of Theorem 5.1.1.

We proved that the order of every element in MN(1) is at most s1 +4e, but this

is not enough, since we want the same kind of bound on the length of MN(1), which
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can be greater than the maximal order of its elements.

Let us assume without loss of generality that the order of (κ+
1 ,κ−1 ) is the or-

der of κ
+
1 . If that is not the case, then the order of (κ+

1 ,κ−1 ) is the order of κ
−
1

and we can proceed analogously swapping the signs. Since for N � 0, κ1 6= 0 in

H1
F (K,T/pNT ), we can write

H1
F (K,T/pNT )+'Zp/pN⊕X1, H1

F (K,T/pNT )−'Y1, where X1⊕Y1 =
r+s⊕
i=1

Zp/pmi,

where we renamed the cyclic summands as

X1 = Zp/pe1⊕Zp/pe2⊕·· ·⊕Zp/per , with N  e1 ≥ e2 ≥ ·· · ≥ er

Y1 = Zp/pd1⊕Zp/pd2⊕·· ·⊕Zp/pds, with N  d1 ≥ d2 ≥ ·· · ≥ ds. (5.4.3)

Remark 5.4.5. Notice that r+ s is independent on N. Indeed, using the fact that

H1
F (K,T/pNT )[p] ' H1

F (K, T̄ ) (which follows from T̄ GK = 0 and Lemma 5.3.1),

we find that the number of direct summands of H1
F (K,T/pNT ) is equal to x where

H1
F (K, T̄ )' (Zp/p)x.

We now fix N� 0 to be such that N  (r+ s)s1 +(r+ s+4)e. Our goal is to

prove the following

s1 + t ≥ 1
2(e1 + · · ·+ er +d1 + · · ·+ds), for some t ≥ 0 depending only on Tp(E).

(claim)

Let us assume this for a moment. We can then prove Theorem 5.1.1.

Proof of Theorem 5.1.1. We have already proved in Corollary 5.4.3 that H1
F (K,T )

is a free Zp-module of rank one. The claim implies

s1 + t ≥ 1
2 lengthR(X1⊕Y1) = lengthR(MN(1)).

Write H1
F (K,W ) = (Qp/Zp)

n⊕Z, where Z is a torsion Zp-module. Consider
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the N fixed above. Since we have

(Zp/pN)n⊕Z[pN ] =H1
F (K,W )[pN ]'H1

F (K,T/pNT )=Zp/pN⊕MN(1)⊕MN(1),

where MN(1) is of maximal order strictly less than N, one deduces that n = 1 and

Z[pN ] = Z =MN(1)⊕MN(1). Applying the inequality above, we hence have proved

that

H1
F (K,W )'Qp/Zp⊕M⊕M, where lengthZp

(M)≤ s1 + t.

We require two lemmas. Before getting into the statements and proofs of these

lemmas, let us briefly sketch what is their role in the proof of the (claim): it relies on

applying Lemma 5.4.6 and Lemma 5.4.7 inductively in order to get the desired in-

equality. For simplicity we will write H±F ′ for the groups H1
F ′(K,T/pNT )±, where

F ′ is some Selmer structure. One considers a Selmer group HF (n) such that

κ
ε
n ∈ Hε

F (n) = Zp/pN⊕Xn, H−ε

F (n) = Yn,

where ε ∈ {±1} is such that the order of κn is equal to the order of κε
n . One chooses

then a prime ` - n using Proposition 5.3.4 and Lemma 5.4.6 tells us what is the

structure of HF (n`). We will show that Hε

F (n`) is given by something closely related

to Xn plus some error terms bounded in terms of e. One then studies the structure

of H−ε

F (n`). We have H−ε

F (n`) ' Zp/pN⊕Yn` and we will characterise Yn` in terms of

Yn. Depending on what happens when we localise at `, we can either bound the size

d of the maximal order component of Yn in terms of e or have Yn` being equal to Yn

with the components of the order d (and possibly one other component) removed,

plus again some bounded extra factors. One finally uses the Kolyvagin relations

(K) and the classes κn = κε
n and κn` = κ

−ε

n` , to which we can apply Lemma 5.4.7, to

prove inequalities

sn +2e≥ sn` in the first case of step 2

sn +2e− 1
2(length of the removed part)≥ sn` in the second one,
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where sn,sn` are the indexes of κn,κn` respectively. One then repeats these steps

again, with sign swapped every time. We will of course start with n = 1, so that at

each step we will have one of the inequalities above for the size of all the compo-

nents in X1 and Y1.

Finally, let us remark that even though the strategy is completely analogous

to the one adopted for [CGLS20, Theorem 3.2.1], the proof in op. cit. cannot be

applied directly in this context, where the character α is the trivial one. Indeed,

even though the presence of a character in [CGLS20] forces us to introduce another

error term, once we go to an extension trivialising the character, we have that both

the + and − component of the Kolyvagin class have big order. So one does not

have an asymmetric situation like the one presented here. Compare for example

(the proofs of) Proposition 5.3.4 and [CGLS20, Proposition 3.3.6] and (the proofs

of) Proposition 5.4.2 and [CGLS20, Theorem 3.3.8].

Lemma 5.4.6. Let F ′ be a Selmer structure of the form F (n) for some n and such

that Hε

F ′ ' Zp/pN ⊕X1, H−ε

F ′ ' Y1, where X1,Y1 can be written as in (5.4.3) and

d1,e1 ≤ S for some S� N. Then there exist infinitely many `1 ∈LN , `1 - n, such

that H−ε

F ′(`1)
= Zp/pN⊕X`1, Hε

F ′(`1)
= Y`1 , with

Y`1 '

 r⊕
i=1

i 6=k1,k2

Zp/pei

⊕Zp/pe′k1 ⊕Zp/pe′k2 ⊕ (Zp/px1⊕Zp/px2) ,

where eki ≤ e′ki
≤ eki +2e,0≤ x1,x2 ≤ 2e

and, if d1 ≤ 2e, the exponent of X`1 is less or equal then p2e; if d1  2e, then

X`1 '
s⊕

j=2
j 6= j(1)

Zp/pd j ⊕

Zp/pd j(1)⊕Zp/px, 0≤ x≤ e

Zp/px1⊕Zp/px2, 0≤ x1,x2 ≤ e.

Proof. Let us assume without loss of generality that ε = +. Take c0 ∈ H+
F ′ to be

a generator of Zp/pN and c1 ∈ Y1 = H−F ′ to be a generator of Zp/pd1 , the first

component of Y1. We take `1 as in Proposition 5.3.4. Since ord(loc`1(c0))≥ N− e,
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we find that the image of the map

H+
F ′ → H1

f (K`1 ,T/pN)+ ' Zp/pN

is isomorphic to Zp/pc for some c≥N−e. We also have that loc`1(pSc0) 6= 0 since

its order is ord(loc`1(c0))−S≥ N−S− e 0. In particular this tells us that

c S.

Let u be a generator of the image. If there existed x ∈ X1 such that loc`1(x) = u,

then we would have ord(x) ≥ c  S ≥ ord(x), giving a contradiction. Hence we

proved that the image is generated by loc`1(c0). Moreover, using as before (LES),

the image of

H+
F ′(`1)

→ H1
tr(K`1 ,T/pNT )+ ' Zp/pN

is Zp/pN−c′ , with N− c′ ≤ N− c≤ e. Hence we find an exact sequence

0→ H+
F ′`1
→ H+

F ′(`1)
� Zp/pN−c′ → 0.

We now use again Lemma 5.3.1 to count the number of summands of H+
F ′(`1)

. Rea-

soning as in the proof of Proposition 5.3.2, we apply Lemma 5.3.3. If the image

of the localisation of the p-torsion of H+
F ′ is zero, then H+

F ′`1
[p] ' (Zp/p)r+1 and

H+
F ′(`1)

[p]' (Zp/p)r+2. Otherwise H+
F ′`1

[p]' (Zp/p)r ' H+
F ′(`1)

[p].

If the image of the localisation of the p-torsion of H+
F ′ is not zero, we have

that H+
F ′(`1)

and H+
F ′`1

have r summands. We find either H+
F ′`1
' X1 or H+

F ′`1
'

(⊕r
i=1,i 6=k′Zp/pei)⊕Zp/pek′+N−c. We therefore have

H+
F ′(`1)

'

 r⊕
i=1

i6=k,k′

Zp/pei

⊕Zp/pek′+x′⊕Zp/pek+x,0≤ x,x′ ≤ 2e (case 1)

If the image of the localisation of the p-torsion of H+
F ′ is zero, the number of sum-

mands of H+
F ′`1

is r + 1. So we must have that it is isomorphic to Zp/pN−c⊕X1.
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Moreover the Selmer group H+
F ′(`1)

has r+ 2 summands. We assume without loss

of generality that c = c′. Indeed we will be using only the fact that N− c′ ≤ e. We

have the following cases

H+
F ′(`1)

'


X1⊕Zp/pN−c⊕Zp/pN−c (case 2)

X1⊕Zp/pm1⊕Zp/pm2, m1 +m2 = 2N−2c (case 3)⊕r
i=1
i 6=k
Zp/pei⊕Zp/pN−c⊕Zp/pn1⊕Zp/pn2, n1 +n2 = N− c+ ek (case 4),

where we remark that in the last case Zp/pek is mapped diagonally in Zp/pn1 ⊕

Zp/pn2 . Using the inequality c ≥ N− e we deduce that in cases 2 and 3, we are

adding to X1 two cyclic groups each of order at most 2e. In case 4, we replace

Zp/pek by some Zp/pe′k where ek ≤ e′k ≤ ek +e and the other two summands added

in case 4 have order at most 2e. All in all, we proved

H+
F ′(`1)

'

 r⊕
i=1

i 6=k1,k2

Zp/pei

⊕Zp/pe′k1 ⊕Zp/pe′k2 ⊕ (Zp/px1⊕Zp/px2) ,

where
eki ≤ e′ki

≤ eki +2e

0≤ x1,x2 ≤ 2e
(+)

Let us now work with the − eigenspace. First of all we notice that, since by

Corollary 5.4.3 ε = 1, we must have an element of order N in HF ′(`1). We claim

that this must be in H−F ′(`1)
. This holds because every element in H+

F ′(`1)
has order

strictly less than N. We already know that all the ei’s are strictly less than N by

assumption, and for our choice of N for the other summands we may add in (+) we

have

ek +2e≤ S+2e� N, xi ≤ 2e� N.

We now consider the exact sequence

0→ H−
F ′`1
→ H−F ′ ' Y1→ H1

f (K`1,T/pNT )− ' Zp/pN .
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Let us write Zp/py for the image of the last map. If y = 0, i.e. the localisation at `1

is the zero map, we have in particular that 0 = ord(loc`1(c1)) ≥ d1− e. Hence all

the di’s are less or equal than e. Using duality again, we have the exact sequence

0→ H−
F ′`1
' Y1→ H−F ′(`1)

→ Zp/pN

and since all di’s are strictly less than N, we proved

d1 ≤ e and H−F ′(`1)
' Zp/pN⊕Y`1 where Y`1 = Y1. (−0)

We now assume y 6= 0. We use again Lemma 5.3.3 to deduce the following: if

the image of the localisation of the p-torsion is zero, the number of summands of

H−F ′(`1)
is s+ 1; if the image of the localisation of the p-torsion is not zero, then

there exists an element of order d j such that the localisation has again order d j and

the number of summands of H−F ′(`1)
is s−1.

In the first case the kernel of the localisation is isomorphic to ⊕ j 6= j1Zp/pd j ⊕

Zp/pd j1−y, for some d j1  y. Using duality as above we find an exact sequence

0→ H−
F ′`1
'⊕ j 6= j1Zp/pd j ⊕Zp/pd j1−y→ H−F ′(`1)

� Zp/pN−y′ → 0,

for y′ ≥ y. We have hence two cases: H−F ′(`1)
'


⊕s

j=1
j 6= j1

Zp/pd j ⊕Zp/pm1⊕Zp/pm2, m1 +m2 = N +d j1−2y′ (case 1)

⊕s
j=1

j 6= j1, j2

Zp/pd j ⊕Zp/pd j1−y′⊕Zp/pn1⊕Zp/pn2, n1 +n2 = N +d j2− y′ (case 2).

In both cases we must have one of the two mi,ni is equal to N. Let us assume

m1,n1 = N. This implies m2 = d j1−2y′ in case 1 and n2 = d j2−y′ in case 2. Recall

that we choose `1 such that ord(loc`1(y1))≥ d1−e. Since d1 is the maximal among

the d j’s and y′ ≥ y≥ ord(loc`1)(y1), we find d j− y′ ≤ e for every j and hence

m2,n2 ≤ e.
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In the second case, i.e. if the image of the localisation of the p-torsion is not

zero, we find

H−
F ′`1
'⊕ j 6= j1, j2Zp/pd j ⊕Zp/pd j1+d j2−y′.

Working as above, we therefore have

H−F ′(`1)
'


⊕s

j=1
j 6= j1, j2

Zp/pd j ⊕Zp/pN+d j1+d j2−2y′ (case 3)

⊕s
j=1

j 6= j1, j2, j3

Zp/pd j ⊕Zp/pd j1+d j2−y′⊕Zp/pN+d j3−y′ (case 4).

Since we must have a summand of length N, we must have
d j1+d j2

2 = y′ in case 3

and d j3 = y′ in case 4.

We can summarise the four cases above as follows

H−F ′(`1)
'Zp/pN⊕

 s⊕
j=1

j 6= j1, j2, j3

Zp/pd j

⊕

Zp/pd j2 ⊕Zp/pd j3 ⊕Zp/px,

Zp/pd j3 ⊕Zp/px1⊕Zp/px2,

Zp/pd j1+d j2−d j3 ⊕Zp/px1⊕Zp/px2, y′ = d j3 ,

(5.4.4)

with 0≤ x,x1,x2 ≤ e.

Notice that if d1 ≤ 2e (and hence d j ≤ 2e for every j), we have one big cyclic

summand of order N and all the remaining summands have again order at most 2e.

On the other hand if d1  2e, then the localisation of d1 is different from zero and

we must have j1 = 1. In particular in the last case (which comes from case 4 above),

we find y′ = d j3 ≥ y≥ d1. This implies that d1 = d j3 . In other words, if d1  2e, the

possible cases are

H−F ′(`1)
'Zp/pN⊕

 s⊕
j=2

j 6= j(1)

Zp/pd j

⊕
Zp/pd j(1)⊕Zp/px, 0≤ x≤ e (−,1)

Zp/px1⊕Zp/px2, 0≤ x1,x2 ≤ e (−,2),

(−)

for some index 2 ≤ j(1) ≤ s. Using again the fact that d1 is maximal and y′ ≥ y ≥
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d1− e, we also find

y′ ≥ d1− e≥ d1
2 − e in case (−,1), y′ ≥ d1+d j(1)

2 − e in case (−,2). (5.4.5)

So in this case, we have H−F ′(`1)
'Zp/pN⊕Y`1 , where Y`1 is Y1 to which we have re-

moved either only the cyclic factor Zp/pd1 or the cyclic factors Zp/pd1⊕Zp/pd j(1) .

One may also have to add some other summands to this group, but the total number

of summands of order strictly greater than 2e has decreased by one or two.

Lemma 5.4.7. Let F ′ be a Selmer structure as in Lemma 5.4.6 and `1 be a prime

produced by such lemma. Assume that there exists a class c ∈H−ε

F ′(`1)
whose locali-

sation at `1 has the same order of the localisation of the class ps1c0 ∈Hε

F ′ , where c0

is the generator of the maximal order summand and s1 ≥ 0 is such that N� s1+S.

Denote by s`1 the index of such class. We then have

s1 +2e≥ s`1.

Moreover, if d1  2e, we also have, depending on the two cases of Lemma 5.4.6,

s1 +2e− d1
2 ≥ s`1 or s1 +2e− d1+d j(1)

2 ≥ s`1.

Furthermore, c must have a non-trivial component (of maximal order) in Zp/pN .

Proof. Assume again without loss of generality that ε =+. We can write c= ps`1 ·c′

for some class c′ ∈ H−F ′(`1)
. Since the image of the localisation at `1 is equal to

py′H1
tr(K`1,T/pNT )− for some y′ ≥ 0, we have that

loc`1(c) ∈ ps`1+y′H1
tr(K`1,T/pNT )−.

The hypothesis shows that

loc`1(ps1c0) ∈ ps`1+y′H1
f (K`1 ,T/pNT )+.

Since the choice of `1 in Lemma 5.4.6 is such that ord(loc`1(c0)) = N− e+ t, the
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index of loc`1(ps1c0) is s1 + e− t and hence s1 + e− t ≥ s`1 + y′ and in particular

s1 + e≥ s`1 + y′. (5.4.6)

Combining this inequality with (5.4.5) in the proof of Lemma 5.4.6, one finds

s1 +2e− d1
2 ≥ s`1 (ineq, 1)

s1 +2e− d1+d j(1)
2 ≥ s`1 (ineq, 2)

in case (−,1) and (−,2) respectively. Notice that in the case d1≤ 2e (which includes

the case y = 0), it will suffice for our purposes to have the following inequality

which is deduced from (5.4.6)

s1 +2e≥ s`1 (ineq, 3)

We also need to show that the class c has a non-trivial component in Zp/pN . We

have

ord(c)≥ ord(loc`1(c)) = ord(loc`1(ps1c0))≥ N− s1− e 0.

Since the order of every element in X`1 ⊕Y`1 is less or equal than S+ 2e, from our

choice of N � 0, we must have that c has a non-trivial component (of maximal

order) in Zp/pN .

We now have all the ingredients to prove the claim.

Proof of the (claim). Recall that N is fixed such that N  (r+ s)s1 +(r+ s+ 4)e.

In order to prove the (claim), we repeatedly apply Lemma 5.4.6 and Lemma 5.4.7,

starting with the Selmer structure F . This gives us the following result.

Lemma 5.4.8. There exist subsets J ⊂ {1, . . . ,s}, I ⊂ {1, . . . ,r} such that

s1 +(r+ s)(2e)≥ 1
2

(
∑
j∈J

d j +∑
i∈I

ei

)

and for all j 6∈ J (resp. all i 6∈ I) d j ≤ (r+ s)2e (resp. ei ≤ (r+ s)2e).
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Proof. We start by considering H+
F ' Zp/pN⊕X1, H−F ' Y1. If d1 ≤ (r+ s)2e and

e1 ≤ (r+ s)2e, then we can take I = J = /0 and there is nothing to prove. Otherwise,

we prove that there exists primes `1, . . . , `r+s such that, letting n = `1 · · · · · `r+s and

sn the index of κn ∈ HF (n), we have

s1 +(r+ s)(2e)≥ 1
2

(
∑
j∈J

d j +∑
i∈I

ei

)
+ sn.

Notice that thanks to Corollary 5.4.3, we can apply Lemma 5.4.6 to F ′ = F , with

S = s1 + 4e; moreover taking c = κ`1 , thanks to (K) and (sign), we can also apply

Lemma 5.4.7. We then apply these lemmas inductively to F ′=F (`1 · · ·`t−1), with

S = s1 +(2+ t−1)2e and c = κnt , so that we can find a prime `t such that, writing

nt = `1 · · ·`t , we have

Hε

F (nt)
' Zp/pN⊕Xnt H−ε

F (nt)
' Ynt ,

where ε = (−1)t and

Xnt =

r(nt)⊕
i=1

Zp/pe(nt )
i , r(t)≤ s(t−1), e(nt)

1 ≥ e(nt)
2 ≥ ·· · ≥ e(nt)

r(nt)
,

Ynt =

s(nt)⊕
j=1

Zp/pd(nt )
j , s(t)≥ r(t−1), d(nt)

1 ≥ d(nt)
2 ≥ ·· · ≥ d(nt)

s(nt)
.

Moreover:

(i) there is an injection ft : {1, . . . ,r(t− 1)} → {1, . . . ,s(t)}, such that e(nt−1)
i ≤

d(n j)

ft(i)
≤ e(nt−1)

i +2e and the missing d(nt)
j are bounded by 2e;

(ii) if d(nt−1)
1  2e, there is an injection gt : {1, . . . ,s(t−1)}−St → {1, . . . ,r(t)},

such that e(nt)
gt( j) = d(nt−1)

j and the missing e(nt)
i are bounded by 2e. Here St ⊂

{1, . . . ,s(t−1)} is either a singleton {xt} or it contains two elements {xt ,yt}

and we set d(nt−1)
yt = 0 in the former case; if d(nt−1)

1 ≤ 2e, then d(nt)
1 ≤ 2e and

we set d(nt−1)
xt = d(nt−1)

yt = 0;
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(iii) snt−1 + 2e ≥ snt +
d
(nt−1)
xt +d

(nt−1)
yt

2 , where snt−1 and snt are the indexes of κnt−1

and κnt respectively;

(iv) snt ≤ snt−1 +2e, the exponent of Xnt ⊕Ynt is bounded by s1+(2+ t)2e and κnt

has a non trivial component of maximal order in Zp/pN .

Combining the inequalities of (iii), we find

snt ≤ snt−1 +2e− d
(nt−1)
xt +d

(nt−1)
yt

2 ≤ snt−2 +4e− d
(nt−1)
xt +d

(nt−1)
yt +d

(nt−2)
xt−1 +d

(nt−2)
yt−1

2

≤ s1 + t(2e)− 1
2

t

∑
i=1

(d(ni−1)
xi +d(ni−1)

yi ).

Applying (ii), we find that for t = r + s, the exponent of Xnt ⊕Ynt is bounded by

(r+ s)2e. Moreover, from (i) and (ii) we find that there exist some J ⊂ {1, . . . ,s},

I ⊂ {1, . . . ,r}, such that there is an injection from I∪ J to ∪t
i=1St and

t

∑
i=1

d(ni−1)
xi +d(ni−1)

yi ≥ ∑
j∈J

d j +∑
i∈I

ei, and for j 6∈ J, i 6∈ I,d j ≤ t(2e),ei ≤ t(2e).

Combining this with the above inequality, we get the desired result.

In order to conclude we consider the inequality of the previous lemma. Adding
1
2

(
∑ j 6∈J d j +∑i 6∈I ei

)
to both sides, we find

s1 +(1+ 1
2(r+ s−#I−#J))(r+ s)(2e)≥ s1 +(r+ s)(2e)+ 1

2

(
∑
j 6∈J

d j +∑
i 6∈I

ei

)

≥ 1
2

(
s

∑
j=1

d j +
r

∑
i=1

ei

)
.

The left hand side is less or equal than s1 +(1+ r+ s)(r+ s)(2e), we hence have

proved

s1 +(1+ r+ s)(r+ s)(2e)≥ 1
2

(
s

∑
j=1

d j +
r

∑
i=1

ei

)
.

Since x := 1+ r+ s is independent on N by Remark 5.4.5 and so is e by Proposition
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5.3.4, we have

s1 +4x2(2e)≥ 1
2

(
s

∑
j=1

d j +
r

∑
i=1

ei

)
,

which concludes the proof of the (claim).

Remark 5.4.9. Let us consider the case where T = Tp(E) is residually irreducible.

In this case e = 0. Since t is a multiple of (2e), we have proved that

lengthZp
(M)≤ lengthZp

(H1
F (K,T )/Zp ·κ1),

giving an alternative proof to Howard’s result [How04, Theorem 1.6.1].
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tiques. In Modular functions of one variable, II (Proc. Internat. Summer

School, Univ. Antwerp, Antwerp, 1972), pages 143–316. Lecture Notes

in Math., Vol. 349, 1973.

[DS05] F. Diamond and J. Shurman. A first course in modular forms, volume

228 of Graduate Texts in Mathematics. Springer-Verlag, New York,

2005.
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Paris, 1983.

[Pil20] V. Pilloni. Higher coherent cohomology and p-adic modular forms of

singular weights. Duke Math. J., 169(9):1647–1807, 2020.

[PR87] B. Perrin-Riou. Fonctions L p-adiques, théorie d’Iwasawa et points de
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